Третий закон ньютона краткое содержание. Законы механики ньютона

В школьном курсе физики изучаются три закона Ньютона, являющиеся основой классической механики. Сегодня с ними знаком каждый школьник, но во времена великого ученого подобные открытия считались революционными. Законы Ньютона, кратко и понятно будут описаны ниже, они помогают не только понять основу механики и взаимодействия объектов, но и помогают записать данные в качестве уравнения.

Впервые три закона Иссак Ньютон описал в труде «Математические начала натуральной философии» (1867 год), в котором были подробно изложены не только собственные выводы ученого, но все знания по этой теме открытые другими философами и математиками. Таким образом, труд стал фундаментальным в истории механики, а позднее и физики. В нем рассмотрены перемещение и взаимодействие массивных тел.

Интересно знать! Исаак Ньютон был не только талантливым физиком, математиком и астрономом, но и считался гением в механике. Занимал должность президента королевского общества Лондона.

Каждое утверждение освещает одну из сфер взаимодействия и перемещения предметов в природе, правда обращение к ним было несколько упразднено Ньютоном, и они были приняты как точки без определенного размера (математические).

Именно это упрощение позволило проигнорировать естественные физические явления: воздушное сопротивление, трение, температуру или другие физические показатели объекта.

Полученные данные могли быть описаны только по времени, массе или длине. Именно из-за этого формулировки Ньютона обеспечивают лишь подходящие, но приближенные значения, которые нельзя использовать для описания точной реакции крупных или изменяемых по форме объектов.

Перемещение массивных предметов, которые участвуют в определениях, принято исчислять в инерциальной , представленной в виде системы координат из трех измерений, и при этом она не увеличивает свою скорость и не оборачивается вокруг своей оси.

Ее часто называют системой отсчета Ньютона, но при этом ученый никогда не создавал и не использовал подобной системы, а использовал нерациональную. Именно в этой системе тела могут двигаться так, как описывает это Ньютон.

Первый закон

Называется законом инерции. Не существует его практической формулы, зато есть несколько формулировок. В учебниках по физике предлагается следующая формулировка первого закона Ньютона: есть инерциальные системы отсчета, в отношении которых объект, если он свободен от воздействия любых сил (или же они моментально компенсируется), находиться в полном покое или же двигается по прямой и с одинаковой скоростью. Что означает данное определение и как его понять?

Простыми словами первый закон Ньютона объясняется так: любое тело, если его не трогать и никоим образом не воздействовать на него, будет оставаться постоянно в состоянии покоя, то есть бесконечно стоять на месте. То же самое происходит и при его движении: оно будет равномерно двигаться по заданной траектории бесконечно, пока на него не воздействует что-либо.

Подобное утверждение озвучивал Галилео Галилей, но не смог уточнить и точно описать это явление. В этой формулировке важно правильно понять, что такое инерциальные системы отсчета. Если сказать совсем простыми словами, то это система, в которой выполняется действие данного определения.

В мире можно увидеть огромное множество подобных систем, если понаблюдать за движением:

  • поезда на заданном участке с одинаковой скоростью;
  • Луны вокруг Земли;
  • колеса обозрения в парке.

В качестве примера рассмотрим некоего парашютиста, который уже раскрыл парашют и движется прямолинейно и при этом равномерно по отношению к поверхности Земли. Движение человека не прекратиться до тех пор, пока земное притяжение будет компенсироваться движением и сопротивлением воздуха. Как только это сопротивление уменьшится, то притяжение увеличится, что приведет к изменению скорости парашютиста – его движение станет прямолинейным и равноускоренным.

Именно в отношении этой формулировки существует яблочная легенда: Исаак отдыхал в саду под яблоней и размышлял о физических явлениях, когда с дерева сорвалось спелое яблоко и упало в траву. Именно ровное падение заставило ученого изучить этот вопрос и выдать в итоге научное объяснение движению предмета в некой системе отсчета.

Интересно знать! Помимо трех явлений в механике, Исаак Ньютон также объяснил движение Луны как спутника Земли, создал корпускулярную теорию света и разложил радугу на 7 цветов.

Второй закон

Данное научное обоснование касается не просто движения предметов в пространстве, а взаимодействия их с другими объектами и результатов этого процесса.

Закон гласит: увеличение скорости объекта с некоторой постоянной массой в инерциальной системе отсчета прямо пропорционально силе воздействия и обратно пропорционально постоянной массе движущегося предмета.

Проще говоря, если существует некое движущиеся тело, масса которого не изменяется, и на него вдруг начнет воздействовать посторонняя сила, то оно начнет ускоряться. А вот скорость ускорения будет прямо зависеть от воздействия и обратно пропорционально зависеть от массы движущегося предмета.

Для примера можно рассмотреть снеговой шар, который катиться с горы. Если шар толкать по ходу движения, то ускорения шара будет зависеть от мощности воздействия: чем она больше, тем больше ускорение. Но, чем больше масса данного шара, тем меньше будет ускорение. Данное явление описывается формулой, в которой учитывается ускорение, или «a», равнодействующая масса всех воздействующих сил, или «F», а также масса самого предмета, или «m»:

Следует уточнить, что данная формула может существовать только в том случае, если равнодействующая всех сил не меньше и не равна нулю. Применяется закон только относительно тел, которые двигаются со скоростью меньше световой.

Полезное видео: первый и второй законы Ньютона

Третий закон

Многие слышали выражение: «На каждое действие есть свое противодействие». Его часто используют не только в общеобразовательных целях, но и воспитательных, объясняя, что на каждую силу найдется большая.

Эта формулировка пошла от очередного научного утверждения Исаака Ньютона, а точнее его третьего закона, который объясняет взаимодействие различных сил в природе относительно какого-либо тела.

Третий закон Ньютона определение имеет такое: предметы оказывают воздействие друг на друга с силами одинаковой природы (соединяющей массы предметов и направлены вдоль прямой), которые равны по своим модулям и при этом направлены в разные стороны. Данная формулировка звучит достаточно сложно, но простыми словами объяснить закон легко: каждая сила имеет свое противодействие или равную силу, направленную в обратную сторону.

Гораздо проще будет понять смысл закона, если в качестве примера взять пушку, из которой стреляют ядрами. Пушка воздействует на снаряд с той же силой, с которой снаряд воздействует на пушку. Подтверждением этого будет небольшое движение пушки назад во время выстрела, что подтвердит воздействие ядра на орудие. Если взять как пример тоже самое яблоко, которое падает на землю, то станет понятно, что яблоко и земля воздействуют друг на друга с равной силой.

Закон имеет также математическое определение, в котором используется сила первого тела (F1) и второго (F2):

Знак минуса сообщает о том, что векторы сил двух разных тел направлены в противоположные стороны. При этом важно помнить, что данные силы не компенсируют друг друга, поскольку направлены относительно двух тел, а не одного.

Полезное видео: 3 закона Ньютона на примере велосипеда

Вывод

Данные законы Ньютона кратко и четко необходимо знать каждому взрослому человеку, поскольку они являются основой механики и действуют в повседневной жизни, несмотря на то, что не при всех условиях данные закономерности соблюдаются. Они стали аксиомами в классической механике, и на основе их были созданы уравнения движения и энергии (сохранение импульса и сохранение механической энергии).

Всякое действие тел друг на друга носит характер, взаимодействия: если тело 1 действует на тело 2 с силой то и тело 2 в свою очередь действует на тело 1 с силой

Третий закон Ньютона утверждает, что силы, с которыми действуют друг на друга взаимодействующие равны по величине и противоположны по направлению. Используя приведенные выше обозначения сил, содержание третьего закона можно представить в виде равенства:

Из третьего закона Ньютона вытекает, что силы возникают попарно: всякой силе, приложенной к какому-то телу, можно сопоставить равную ей по величине и противоположно направленную силу, приложенную к другому телу, взаимодействующему с данным.

Третий закон Ньютона бывает справедлив не всегда. Он выполняется вполне строго в случае контактных взаимодействий (т. е. взаимодействий, наблюдающихся при непосредственном соприкосновении тел), а также при взаимодействии находящихся на некотором расстоянии друг от друга покоящихся тел.

В качестве примера нарушения третьего закона Ньютона может служить система из двух заряженных частиц движущихся в рассматриваемый момент так, как показано на рис. 11.1. В электродинамике доказывается, что, кроме подчиняющейся третьему закону силы электростатического взаимодействия на первую частицу будет действовать магнитная сила На вторую же частицу действует лишь сила равная Величина магнитной силы, действующей на вторую частицу, для изображенного на рисунке случая равна нулю.

Отметим, что при скоростях частиц, много меньших скорости света в пустоте (при ), сила F пренебрежимо мала по сравнению с силой так что третйй закон Ньютона оказывается практически справедливым и в этом случае.

Теперь рассмотрим систему из двух электрически нейтральных частиц удаленных друг от друга на расстояние . Вследствие всемирного тяготения эти частицы притягивают друг друга с силой

В данном случае взаимодействие частиц осуществляется через гравитационное поле. Скажем, первая частица создает в окружающем ее пространстве поле, которое проявляет себя в том, что на помещенную в какую-либо точку этого поля частицу действует сила притяжения к первой частице. Аналогично вторая частица создает поле, которое проявляет себя в действии на первую частицу. Опыт дает, что изменения поля, обусловленные, например, изменением положения создающей поле частицы, распространяются в пространстве не мгновенно, а с хотя и очень большой, но конечной скоростью, равной скорости света в пустоте с.

Предположим, что первоначально частицы покоятся в положениях 1 и 2 (рис. 11.2). Силы взаимодействия равны по величине и противоположны по направлению. Теперь пусть частица очень быстро (со скоростью, почти равной с) сместится в положение . В этой точке на частицу будет действовать сила меньшая по величине. и иначе направленная, чем (напомним, что поле частицы остается неизменным). На, вторую же частицу, пока возмущение поля, вызванное смещением не достигнет точки 2, будет продолжать действовать сила Следовательно, пока двигалась частица течение некоторого времени после того, как она остановилась в точке 1, третий закон Ньютона был нарушен.

Если бы частица перемещалась из точки 1 в точку Г со скоростью V, много меньшей или скорость распространения возмущений поля была бесконечно большой, то мгновенные значения поля в точке 2 отвечали бы положениям частицы в, тот же момент времени, и следовательно, нарушений третьего закона не наблюдалось бы.

Ньютоновская механика вообще справедлива лишь для скоростей движения, много меньших скорости света (при ). Поэтому в рамках этой механики скорость распространения возмущений поля считается бесконечной, а третий закон Ньютона выполняющимся всегда.

Зако́ны Ньюто́на - три закона, лежащие в основе классической механики и позволяющие записать уравнения движения для любой механической системы, если известны силовые взаимодействия для составляющих её тел. Впервые в полной мере сформулированы Исааком Ньютоном в книге «Математические начала натуральной философии» (1687 год)

Первый закон Ньютона постулирует существование инерциальных систем отсчета. Поэтому он также известен как Закон инерции . Инерция — это явление сохранения телом скорости движения (и по величине, и по направлению), когда на тело не действуют никакие силы. Чтобы изменить скорость движения тела, на него необходимо подействовать с некоторой силой. Естественно, результат действия одинаковых по величине сил на различные тела будет различным. Таким образом, говорят, что тела обладают инертностью. Инертность - это свойство тел сопротивляться изменению их скорости. Величина инертности характеризуется массой тела.

Современная формулировка

В современной физике первый закон Ньютона принято формулировать в следующем виде:

Существуют такие системы отсчёта, называемые инерциальными, относительно которых материальная точка при отсутствии внешних воздействий сохраняет величину и направление своей скорости неограниченно долго.

Закон верен также в ситуации, когда внешние воздействия присутствуют, но взаимно компенсируются (это следует из 2-го закона Ньютона, так как скомпенсированные силы сообщают телу нулевое суммарное ускорение).

Историческая формулировка

Ньютон в своей книге «Математические начала натуральной философии» сформулировал первый закон механики в следующем виде:

Всякое тело продолжает удерживаться в состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние.

С современной точки зрения, такая формулировка неудовлетворительна. Во-первых, термин «тело» следует заменить термином «материальная точка», так как тело конечных размеров в отсутствие внешних сил может совершать и вращательное движение. Во-вторых, и это главное, Ньютон в своём труде опирался на существование абсолютной неподвижной системы отсчёта, то есть абсолютного пространства и времени, а это представление современная физика отвергает. С другой стороны, в произвольной (скажем, вращающейся) системе отсчёта закон инерции неверен. Поэтому ньютоновская формулировка нуждается в уточнениях.

Второй закон Ньютона

Второй закон Ньютона - дифференциальный закон движения, описывающий взаимосвязь между приложенной к материальной точке силой и получающимся от этого ускорением этой точки. Фактически, второй закон Ньютона вводит массу как меру проявления инертности материальной точки в выбранной инерциальной системе отсчёта (ИСО).

Масса материальной точки при этом полагается величиной постоянной во времени и независящей от каких-либо особенностей её движения и взаимодействия с другими телами.

Современная формулировка

В инерциальной системе отсчёта ускорение, которое получает материальная точка с постоянной массой, прямо пропорционально равнодействующей всех приложенных к ней сил и обратно пропорционально её массе.

При подходящем выборе единиц измерения, этот закон можно записать в виде формулы:

где — ускорение материальной точки;
— сила, приложенная к материальной точке;
— масса материальной точки.

Второй закон Ньютона может быть также сформулирован в эквивалентной форме с использованием понятия импульс:

В инерциальной системе отсчета скорость изменения импульса материальной точки равна равнодействующей всех приложенных к ней внешних сил.

где — импульс точки, — её скорость, а — время. При такой формулировке, как и при предшествующей, полагают, что масса материальной точки неизменна во времени

Иногда предпринимаются попытки распространить сферу применения уравнения и на случай тел переменной массы. Однако, вместе с таким расширительным толкованием уравнения приходится существенным образом модифицировать принятые ранее определения и изменять смысл таких фундаментальных понятий, как материальная точка, импульс и сила .

Когда на материальную точку действуют несколько сил, с учётом принципа суперпозиции второй закон Ньютона записывается в виде:

или, в случае если силы не зависят от времени,

Второй закон Ньютона действителен только для скоростей, много меньших скорости света и в инерциальных системах отсчёта. Для скоростей, приближенных к скорости света, используются законы теории относительности.

Нельзя рассматривать частный случай (при ) второго закона как эквивалент первого, так как первый закон постулирует существование ИСО, а второй формулируется уже в ИСО.

Историческая формулировка

Исходная формулировка Ньютона:

Изменение количества движения пропорционально приложенной движущей силе и происходит по направлению той прямой, по которой эта сила действует.

Третий закон Ньютона

Этот закон объясняет, что происходит с двумя материальными точками. Возьмём для примера замкнутую систему, состоящую из двух материальных точек. Первая точка может действовать на вторую с некоторой силой , а вторая — на первую с силой . Как соотносятся силы? Третий закон Ньютона утверждает: сила действия равна по модулю и противоположна по направлению силе противодействия. Подчеркнём, что эти силы приложены к разным материальным точкам, а потому вовсе не компенсируются.

Современная формулировка

Материальные точки взаимодействуют друг с другом силами, имеющими одинаковую природу, направленными вдоль прямой, соединяющей эти точки, равными по модулю и противоположными по направлению:

Закон отражает принцип парного взаимодействия.

Историческая формулировка

Действию всегда есть равное и противоположное противодействие, иначе, взаимодействия двух тел друг на друга равны и направлены в противоположные стороны.

Для силы Лоренца третий закон Ньютона не выполняется. Лишь переформулировав его как закон сохранения импульса в замкнутой системе из частиц и электромагнитного поля, можно восстановить его справедливость.

Выводы

Из законов Ньютона сразу же следуют некоторые интересные выводы. Так, третий закон Ньютона говорит, что, как бы тела ни взаимодействовали, они не могут изменить свой суммарный импульс: возникает закон сохранения импульса . Далее, если потребовать, чтобы потенциал взаимодействия двух тел зависел только от модуля разности координат этих тел , то возникает закон сохранения суммарной механической энергии взаимодействующих тел:

Законы Ньютона являются основными законами механики. Из них могут быть выведены уравнения движения механических систем. Однако не все законы механики можно вывести из законов Ньютона. Например, закон всемирного тяготения или закон Гука не являются следствиями трёх законов Ньютона.

Главными законы классической механики являются три закона Ньютона. Сейчас мы рассмотрим их подробней.

Первый закон Ньютона

Наблюдения и опыт показывают, что тела получают ускорение относительно Земли, т. е. изме­няют свою скорость относительно Земли, только при действии на них других тел.

Представим себе, что пробка воздушного «пистолета» приходит в движении под действием газа, сжимаемого выдвигаемым поршнем, т.е. получается такая последовательная цепочка сил:

Сила, приводящая в движение поршень => Сила поршня, сжимающая газ в цилиндре => Сила газа, приводящая в движение пробку.

В этом и других подобных случаях изменение скорости, т.е. возникновение ускорения, есть результат действие сил на данное тело других тел.

Если же на тело не будут действовать силы (или силы будут скомпенсированным, т.е. ), то тело будет оставаться в покое (относительно Земли), либо двигаться равномерно и прямолинейно, т.е. без ускорения.

На основе этого позволило установить первый закон Ньютона, который чаще называют закон инерции:

Существуют такие инерциальные системы отсчета, относительно которых, тело покоится (частный случай движения) или движется равномерно и прямолинейно, если на тело не действуют силы или действия этих сил скомпенсировано.

Проверить простыми опытами данный закон практически невозможно, потому что невозможно полностью устранить действие всех окружающих сил, особенно действие трения.

Тщательные опыты по изучению движения тел были впервые произведены итальянским физиком Галилеем Галилео в конце XVI и начале XVII веков. Позже более подробнее этот закон был описан Исааком Ньютоном, поэтому в честь него и был назван этот закон.

Подобные проявления инерции тел широко используют­ся в быту и технике. Встряхивание пыльной тряпки, «сбрасывания» стол­бика ртути в термометре.

Второй закон Ньютона

Различные опыты показывают, что ускорения совпадает с направлением силы, вызывающее это ускорение. Поэтому, можно сформулировать закон зависимости сил приложенных к телу от ускорения:

В инерциальной системе отсчёта произведение массы и ускорение равно равнодействующей силы (равнодействующая сила – геометрическая сумма всех сил, приложенных к телу) .

Масса тела, является коэффициентом пропорциональности данной зависимости. По определению ускорения () запишем закон в иной форме, а далее получается, что в числители правой части равенства является изменение импульса Δ p , поскольку Δ p=m Δv

Значит, второй закон можно записать в такой виде:

В таком виде Ньютон и записал свой второй закон.

Данный закон действителен только для скоростей, много меньших скорости света и в инерциальных системах отсчёта.

Третьей закон Ньютона

При соударении двух тел изменяют свою скорость, т.е. получают ускорения оба тела. Земля притягивает Луну и заставляет ее двигаться по криволинейной траектории; в свою же очередь Луна также притягивает Землю (сила всемирного тяготения).

Эти примеры показывают, что силы всегда возникают парами: если одно тело действует с силой на другое, то и второе тело действует на первое с такой же силой. Все силы носят взаимный характер.

Тогда можно сформулировать третий закон Ньютона:

Тела попарно действуют друг на друга с силами, направленными вдоль прямой, равными по модулю и противоположными по направлению.

Часто этот закон называют трудным законом, т.к. не понимают смысл этот закон. Для простоты понимания закона можно переформулировать данный закон («Действие равно противодействию») на « Сила, противодействующая равна силе действующей» , так как эти силы приложены к разным телам.

Даже падение тел строго подчиняется закону про­тиводействия. Яблоко надает на Землю оттого, что его притягивает земной шар; но точно с такой же силой и яблоко притягивает к себе всю нашу планету.

Для силы Лоренца третий закон Ньютона не выполняется.

Основные законы механики Ньютон сформулировал в своей книге «Математические начала натуральной философии».

Итак, можно сделать вывод, что все эти три закона Ньютона являются фундаментном классической механики; и каждый из законов вытекает в другой.

«Физика - 10 класс»

Какие силы возникают при взаимодействии тел?
В чём проявляется взаимодействие тел?
Какова природа сил взаимодействия?

В третьем законе Ньютона формулируется одно общее свойство всех сил, рассматриваемых в механике: любое действие тел друг на друга носит характер взаимодействия . Это означает, что если тело А действует на тело В, то и тело В действует на тело А.


Взаимодействие тел.


Примеров взаимодействия тел и сообщения ими друг другу ускорений можно привести сколь угодно много. Когда вы, находясь в одной лодке, начнёте за верёвку подтягивать другую лодку, то и ваша лодка обязательно будет двигаться к ней (рис. 2.24). Вы действуете на верёвку, и верёвка действует на вас.

Если вы ударите ногой по футбольному мячу или толкнёте плечом товарища, то ощутите обратное действие на ногу или плечо. Всё это проявления закона взаимодействия тел.

Действия тел друг на друга носят характер взаимодействия не только при непосредственном контакте тел. Положите на гладкий стол два сильных магнита разноимёнными полюсами навстречу друг другу, и вы тут же обнаружите, что они начнут двигаться навстречу друг другу.

Изменения скоростей обоих взаимодействующих тел легко наблюдаются лишь в тех случаях, когда массы этих тел мало отличаются друг от друга. Если же взаимодействующие тела значительно различаются по массе, заметное ускорение получает только то из них, которое имеет меньшую массу. Так, при падении камня мы видим, что камень движется с ускорением, но ускорение Земли (а ведь камень тоже притягивает Землю!) практически обнаружить нельзя, так как оно очень мало.

Силы взаимодействия двух тел.


Выясним с помощью опыта, как связаны между собой силы взаимодействия двух тел.

Возьмём достаточно сильный магнит и железный брусок, установим их на катки для уменьшения трения о стол (рис. 2.25). К концам магнита и бруска прикрепим одинаковые пружины, закреплённые другими концами на столе. Магнит и брусок притянутся друг к другу и растянут пружины.

Опыт показывает, что к моменту прекращения движения пружины растянуты совершенно одинаково.

Это означает что на оба тела со стороны пружин действуют одинаковые по модулю и противоположные по направлению силы:

Так как магнит покоится, то сила 2 равна по модулю и противоположна по направлению силе 4 , с которой на него действует брусок:

2 = - 4 . (2.6)

Точно так же равны по модулям и противоположны по направлению силы, действующие на брусок со стороны магнита и пружины:

Отсюда следует, что силы, с которыми взаимодействуют магнит и брусок, равны по модулю и противоположны по направлению:


Третий закон Ньютона.


На основе подобных опытов можно сформулировать третий закон Ньютона.

Силы, с которыми тела действуют друг на друга, равны по модулю и направлены по одной прямой в противоположные стороны.

Если на тело А со стороны тела В действует сила A (рис. 2.26), то одновременно на тело В со стороны тела А будет действовать сила B , причём