На что наносится покрытие карбид вольфрама. Способ нанесения покрытий с карбидами вольфрама. Основные свойства вольфрама

Покрытие карбида вольфрама, как альтернатива гальваническому хромированию.

В течение более чем 70 лет хромированные покрытия оставались незаменимыми для защиты компонентов авиации, промышленных и потребительских изделий от износа, ударной нагрузки и коррозии. Однако в последние годы недостатки хромированных поверхностей заставили инженерное сообщество искать более дешевые и эффективные способы защиты поверхностей как в военном и гражданском авиационном секторе, так и в промышленности. Наилучшей альтернативой хромированию сегодня считается высокоскоростное газопламенное напыление (HVOF) карбида вольфрама. Оценочные испытания и увеличение количества успешных промышленных применений HVOF покрытий карбида вольфрама для различных компонентов авиационных двигателей и планера доказывают их преимущество. Эти покрытия применяются на шасси самолетов, гидравлических цилиндрах, подшипниках реактивных двигателей и корпусах подшипников, валах турбин и даже на таких элементах, как цепь привода вертолета и узлах пропеллера. Обеспечивающие лучшую защиту от износа, ударной нагрузки и усталости, лучшую или аналогичную защиту от коррозии, эти покрытия постепенно заменяют хромирование.

Помимо того, что HVOF покрытия карбида вольфрама имеют преимущество при работе в тяжелых условиях, эти покрытия гораздо легче наносятся по сравнению с традиционными электролитическими ваннами с хромом. Действительно, большое количество опубликованных технологических оценок (как военной так и гражданской направленности) доказывают состоятельность HVOF покрытий для замены хромирования. На сегодняшний день большое количество лабораторных и опытных испытаний, коммерческой эксплуатации продемонстрировали преимущества HVOF покрытий в защите от износа, коррозии и перегрева; трудоемкости нанесения; родолжительности жизненного цикла; экономической эффективности.

Лучший метод нанесения

HVOF покрытия наносятся с помощью . В ходе этого процесса горючий газ и кислород перемешиваются и под высоким давлением подаются в камеру сгорания, где происходит горение и образуется газовый поток высокого давления. Частицы порошка карбида вольфрама автоматически подаются непосредственно в область горения. Высокоскоростной газовый поток, содержащий расплавленные частицы порошка, направляется в сторону подложки, удар и осаждение частиц на поверхности образуют плотное покрытие с пористостью меньше чем 1% , содержанием оксидов меньше чем 1% и прочностью сцепления больше чем 80 МПа. HVOF покрытия наносятся в специальных роботизированных шумозащитных камерах .

Нанесение HVOF покрытия происходит быстрее по сравнению со стандартным хромированием. Обычно процесс напыления карбида вольфрама на шток занимает 1-2 часа, в то время как хромирование — более суток. К тому же, в отличие от хромирования, HVOF покрытия карбида вольфрама не подвержены водородному охрупчиванию . Все эти рабочие факторы в тандеме с уменьшением частоты ремонта и сокращением времени на восстановление позволяют сократить время простоя деталей в эксплуатации и увеличить жизненный цикл важных компонентов промышленных двигателей и элементов авиации.

Как видно из таблицы 1, значение микротвердости покрытий карбида вольфрама превышает 70 Rc, в то время как хромированные покрытия дают твердость 60-70 Rc. Значения микротвердости HVOF покрытия карбида вольфрама и хромированного покрытия по Виккерсу составляют соответственно 1050 для HVOF и 750-850 для хромирования.

Как замечено выше, высокие показатели прочности сцепления и низкая пористость так же доказывают преимущество HVOF покрытий. Из таблицы 1 можно заметить превосходство HVOF покрытия по сравнению с хромированием по антикоррозионным свойствам температурной выносливости.

Коммерческая эксплуатация

HVOF покрытия карбида вольфрама уже наносятся на различный элементы самолетов и шасси. К примеру, компания Engelhard применяет HVOF покрытия на самолетах как гражданской так и военной авиации, включая шасси и силовые приводы.

Министерство обороны, военно-воздушные силы и флот Сооединенных Штатов, а так же растущий частный сектор авиастоения и производства реактивных двигателей признают превосходство HVOF покрытий карбида вольфрама над гальваническим хромированием по параметрам защиты от износа, усталости и коррозии.
Перевод: Краснов Денис ООО «Технологические системы защитных покрытий»

М 30054 асс ПИ льфрамом способа гальван ого покрытия металругими металлами. тву В. А. Плотникова, Н. Н. Грациакского и у 13 марта 1931 года (заяв.свид.8490 твв опубликовано 30 апреля: 1933 года В настоящеее время имеется много способов покрытия металлических поверхностей другими металлами. Целью покрытия является улучшение техниче. ских качеств металлических поверхностей, как-то; повышение стойкости против коррозии (например, цинкование), предохранение от окисления (например, хромирование), придание более красивого вида и блеска(например, никеллирование) и проч,Посредств имеется в ви осаждения и годных мета лочных и ще на поверхнос мых металло Способ металлов вол лами состои ную смесь солагаемого способа нуть возможности х технически приисключением щемельных металлов, чески употребляеом пред ду достиг очти все ллов, за лочио-зе ти техн и Существующие способы покрытий можно разделить на две группы: 1) покрытие расплавленными металлами, например, получение белой жести, или покрытие распыленным металлом, как например, способ Шоппа, и проч 2) гальваническое покрытие металла (например, никеллирование, хромирование, серебрение и проч.).Эти способы не позволяют покрывать поверхности металлами, имеющими или высокую температуру плавления при первом способе, или не поддающимися хорошему гальваническому осаждению при втором способе. Покрытие же этими металлами могло бы дать много преимуществ в виду их большой стойкости.(т 7) хлорида алюминия и хлорида натрия, помещается для получения коллоидального раствора металл, идущий на по- крытие. При нагревании металлы образуют коллоидальный раствор в расплавленной смеси солей. По образовании достаточной концентрации коллоида металла в ванну опускают предварительно подготовленный металлический предмет, подлежащий покрытию, Через некоторое время коллоидальные частички металла осаждаются на поверхности предмета сплошным слоем большой или меньшей толщины. Например, на медной пластинке можно получить блестящий слой никнеля, вольфрама, марганца, алюминия, кадмия, молибдена и других метал-лов. авторскому свидетель Фортунатова, заявленно О выдаче авторского сви альванического покрытия ьфрамом и другими метал т в том, что в расплавлен лей, например, безводногоПредмет изобретения,Способ гальванического покрытия ме. таллов вольфрамом и другими металлами без применения внешнего источника тока, отличающийся тем, что по. кровныи металл растворяют в расплавленной смеси хлоридов алюминия и натрия и в этот раствор погружают покрываемый металлический предмет, например, медный.

Заявка

84900, 13.03.1931

Грацианский Н. Н, Плотников В. А, Фортунатов Н. С

МПК / Метки

Код ссылки

Способ гальванического покрытия металлов вольфрамом и другими металлами

Похожие патенты

31 из синтетической пленки (фиг.4), то эти пары будут улавливать,ся и вытягиваться. 1 ОВ целях сведения к минимуму мощ ности потерь подводы тока к аноду и катоду должны осуществляться с минимально возможным сопротивлением, по этому применяются провода из массивной меди с соответственно большим поперечным сечением.Если же вместо внутренней поверхности ленты необходимо хромировать ее наружную поверхность, то ленты распо О лагаются на устройстве так, что лента меньшего диаметра включается как ка тод, например, прессовочная лента 4 с подлежащей хпомированию поверхностью 15 (фиг.1). Соединение катода с отри цательным полюсом источника тока осуществляется через подводы на внутреннюю сторону ленты 4 в соответствии с приведенным описанием,...

В качестве металли ческих подложек используют стальнуюленту 08 КП фольги: алюминиевуюмарки А, бронзовую марки БрБ 2, латунную марки Лтолщиной соответственно 100 200 и 100 мкм. Для получения.раствора оксида хрома (Ч 1) используют оксид хрома (Сг 0), Растворители - вода, ацетон, В качестве материалов для покрытий применяют поли.Я -капролактам (полиамид-б), полиэтилен высокой плотности марки 20906040 и поликарбонат марки ПК. Толщину слоя оксида хрома (Ч 1) определяют по отношению массы оксидахрома (Ч 1), оставшейся на площадипокрываемой поверхности после испарения растворителя, к удельной массенаприменяемого оксида хрома(71). Нанесенную массу оксида хрома (Ч 1) наметаллические подложки определяютвзвешиванием на весах ВЛРг, Фольгу с...

Настоящего изобретения является иопцышеиие долговечности эмали.Достигается это тем, что в качестве опвердителя она содержит полиалюмофецилсилоксан при следующем соотношении компонентов Л, М. Хананашвили, Герш бергМосковский институт тонкойВ. Ломоносова итаэросил ример состава эмали (в Связующее - эпоксиднаясмола ЭД Активный пластификатор-разбавитель ТЭГГрафнтколлоидной марки СЛэросил марки АКремнийорганическийотвер,дитель - полиалюмофенилсилоксан марки КОТехнология получения эмали следующая.В эпоксидную смолу ЭД, разогретую до температуры - 50 - 60 С, добавляют разбавитель ТЭГи наполцитсли - графит и аэросил. Смесь загружает в смсситель и тщательно псремсшнвают. Затем в нее добавляют отвердитсль н снова смешивают,...

Карбид вольфрама широко известный сплав, обладающий высокой твердостью и повышенными износостойкими свойствами. Твердость карбида вольфрама (WC) более 60 HRC. Модуль упругости – 69 ГПа. Покрытия из WC обладают высокими прочностными показателями, но являются хрупкими, а также сложно обрабатываемыми.

Мы предлагаем нанесение покрытия карбида вольфрама с использованием следующих технологий:

  • Плазменное напыление,
  • Газопламенное напыление,
  • Детонационное напыление,
  • Высокоскоростное напыление,
  • Электроискровое легирование,
  • Плазменная наплавка.

Каждая технология имеет свои особенности

Покрытие из карбида вольфрама методом электроискрового легирования наносится толщиной 10-100 мкм. При этом используется электрод изготовленный из карбида вольфрама с добавлением кобальта. Покрытие получаемое при детонационном и высокоскоростном напылении обладает минимальной пористостью. Как правило методами напыления чистый карбид вольфрама не наносится. Используют комбинированные материалы - более мягкий и пластичный материал, с добавлением твердых частиц WC. Такие покрытия считаются более износостойкими. Толщина покрытия из карбида вольфрама при технологиях напыления 100-300 мкм.

Применение покрытий из карбидов вольфрама по характеру износа

  • гидроабразивный износ (покрытие наносится на рабочие колеса насосов)
  • коррозионный износ (изделия контактирующие с водой и подверженные коррозии)
  • абразивный износ (изделия подверженные воздействию абразивных материалов, или частиц абразива)
  • изделия работающие в химически агрессивной среде (плунжера насосов высокого давления, детали уплотнений, втулки)
  • эрозионный износ (детали запорной арматуры) и др.

Применение покрытий из карбида вольфрама

  • Валы и ролики,
  • штоки гидроударных механизмов,
  • плунжера работающие с высокими нагрузками,
  • втулки,
  • буровой инструмент,
  • режущий инструмент,
  • штамповый инструмент,
  • детали оборудования используемого в нефте- и газодобыче

«Плазмацентр» предлагает

  • услуги по восстановлению размеров и нанесению функциональных покрытий;
  • поставка оборудования и материалов для процессов сварки, пайки, наплавки, напыления, осаждения, аддитивных технологий (например, газопламенного, плазменного, высокоскоростного и детонационного напыления, плазменной наплавки, электроискрового легирования, порошковые дозаторы, приборы контроля);
  • проведение НИОКР в области инженерии поверхности, трибологии покрытий, плазменных методов обработки, выбора оптимальных покрытий и методов их нанесения;
  • обучение, консалтинг в области наплавки, напыления, упрочнения, модификации, закалки.

Свяжитесь с нами по телефонам.

Изобретение относится к области гальванотехники и может быть использовано в машиностроении и других отраслях промышленности при изготовлении деталей и инструментов с износостойкими покрытиями, а также для их восстановления. Способ включает электроосаждение кобальт-вольфрамовых покрытий с применением импульсного тока плотностью 10 А/дм 2 из перемешиваемого электролита, имеющего температуру 55-65°С и состав, г/л: сульфат кобальта 12-15, вольфрамат натрия 40-100, цитрат аммония 40-60, карбид вольфрама 10-50, рН 4-8. Полученное покрытие смазывают 10%-ным раствором гексацианоферрата (II) калия в глицерине и обрабатывают электроискровым способом графитовым электродом ЭГ-4 на мягком режиме рабочим током 1,2-1,5 А. Технический результат: повышение твердости и износостойкости покрытия. 3 пр.

Изобретение относится к области нанесения комбинированных электролитических покрытий, содержащих карбиды вольфрама. Покрытие может быть использовано в машиностроении и других отраслях промышленности при изготовлении деталей и инструментов с износостойкими покрытиями, а также для их восстановления.

Известен электроискровой способ получения износостойких покрытий, содержащих карбиды вольфрама, с помощью твердосплавных вольфрамовых электродов (см. Верхотуров А.Д., Подчерняева И.А., Прядко Л.Ф., Егоров Ф.Ф. Электродные материалы для электроискрового легирования. М.: Наука, 1988, 224 с.).

Недостатком известного способа является то, что такие покрытия формируются не сплошными и не однородными, имеют дефекты (поры, микротрещины), получаются матовыми и шероховатыми. Покрытия имеют более высокий коэффициент трения, хуже защищают от коррозии, у них более высокий износ при трении в паре с закаленной сталью по сравнению с покрытием, предлагаемым в изобретении.

Наиболее близким аналогом предлагаемого способа является гальванический способ нанесения покрытий, представляющих из себя кобальт-вольфрамовые сплавы, с последующей их термической обработкой (прототип). В прототипе для получения электролитического сплава, содержащего 40% вольфрама, рекомендован аммиачно-цитратный электролит следующего состава (г/л): сульфат кобальта 15, вольфрамат натрия 100, цитрат аммония 40, рН 5. Температура электролита 40°С, катодная плотность тока 1 А/дм 2 . Аноды вольфрамовые и кобальтовые (см. Ажогин Ф.Ф., Беленький М.А., Галль И.Е. и др. Гальванотехника. Справочник. М.: Металлургия, 1987, 316 с.). Для повышения твердости кобальт-вольфрамовых покрытий их термообрабатывают в течение 1 часа при температуре 600°С (см. Вячеславов П.М. Электролитическое осаждение сплавов. Л: Машиностроение, 1986, 66, 70 с.).

Однако и после термообработки такие покрытия уступают по твердости и износостойкости покрытиям, предлагаемым в изобретении. Это связано с тем, что известное покрытие содержит вольфрам, а в предлагаемом покрытии вольфрам находится так же и в виде карбидов вольфрама, который превосходят металлический вольфрам по твердости и износостойкости.

Задачей изобретения является повышение твердости и износостойкости покрытий.

Для решения данной задачи предложен способ нанесения покрытий с карбидами вольфрама, включающий электролитическое осаждение из электролита, содержащего кобальт сернокислый, вольфрамат натрия, цитрат аммония, в состав этого перемешиваемого электролита, имеющего рН 4-8 и температуру 55-65°С, дополнительно вводят карбид вольфрама, при этом используется импульсный ток плотностью 10 А/дм 2 и следующее соотношение компонентов, г/л: сульфат кобальта 12-15, вольфрамат натрия 40-100, цитрат аммония 40-60, карбид вольфрама 10-50; затем на полученное покрытие наносят смазку, состоящую из 10% раствора гексацианоферрат (II) калия в глицерине и выполняют электроискровую обработку графитовым электродом ЭГ-4 на мягком режиме рабочим током 1,2-1,5А.

Электролит готовили, используя химикаты марок «хч» или «чда». В ванне (основной емкости) в горячей дистиллированной воде растворяли необходимое количество цитрата аммония, в полученном растворе, имеющем температуру около 80°С, растворяли вольфрамат натрия. В отдельной емкости в горячей дистиллированной воде растворяли необходимое количество сульфата кобальта и полученный раствор вливали в ванну (основную емкость) и тщательно перемешивали. Необходимое значение рН устанавливали и поддерживали с помощью 25% водного раствора аммиака или 10% раствором серной кислоты. Полученный электролит фильтровали. Небольшое количество этого электролита смешивали с порошком карбида вольфрама, тщательно перемешивали до получения пастообразной массы, выдерживали до полного смачивания и переводили в ванну (основную емкость), смывая массу электролитом. Тщательно перемешивали полученный электролит. Для приготовления электролита использовали порошкообразный карбид вольфрама ТУ 48-19-540-92 марки WC 250/0,4 дисперсности - 0,4±0,1 мкм.

В этом электролите, предназначенном для электроосаждения кобальт-вольфрамового сплава, сульфат кобальта является источником ионов кобальта, вольфрамат натрия является источником ионов вольфрама, цитрат аммония способствует электроосаждению вольфрама и повышает качество покрытия, что способствует повышению микротвердости и износостойкости покрытий. В электролит вводили микродисперсный порошок карбида вольфрама, который, внедряясь в покрытие, повышает их твердость и износостойкость. Электроосаждение покрытий необходимо осуществлять, используя импульсный ток, который способствует повышению содержания второй фазы (карбида вольфрама) в покрытие, уменьшению концентрации неметаллических примесей и улучшает качество покрытия. При электролизе использовали растворимые аноды из вольфрама и кобальта, т.к. применение нерастворимых анодов уменьшает стабильность электролита.

Затем полученное композиционное покрытие на основе кобальт-вольфрамового сплава смазывали 10% раствором гексацианоферрат(II) калия в глицерине и обрабатывали электроискровым способом. Электроискровое легирование необходимо выполнять, используя электрод, изготовленный из электрографита ЭГ-4. Для электроискровой обработки рекомендуется использовать мягкий режим с рабочей силой тока 1,2-1,5А, обеспечивающий получение покрытий более высокого качества. Глицериновая смазка и графитовый электрод необходимы для повышения концентрации углерода в поверхностном слое покрытия и преобразования вольфрама в карбиды вольфрама. Карбиды вольфрама значительно превосходят металлический вольфрам, входящий в состав покрытия, по твердости и износостойкости.

Пример 1. Наносят предлагаемое покрытие на образец из стали У10А. Образец перед нанесением покрытия шлифовали, полировали, обезжиривали венской известью, декапировали в 10% растворе серной кислоты, промывали водопроводной и дистиллированной водой. Предлагаемое покрытие наносили в электролите с минимальной концентрацией компонентов, г/л:

Электролит перемешивали механической пропеллерной мешалкой и поддерживали его температуру 60°С. Для электроосаждения использовали импульсный ток частотой 167 Гц с прямоугольными импульсами, время импульса соответствовало времени паузы, средняя катодная плотность тока равнялась 10 А/дм 2 . Электролиз выполняли в течение 1,5 часов. В результате электроосаждалось блестящее покрытие, имеющее состав: вольфрам 28,73% (по массе), карбид вольфрама 8,16%, остальное кобальт. Толщина покрытия составила 72,9 мкм. Затем полученное композиционное покрытие на основе кобальт-вольфрамового сплава смазывали 10% раствором гексацианоферрат(II) калия в глицерине и обрабатывали электроискровым способом. Электроискровое легирование выполняли на установке ЭФИ-46А, используя электрод, изготовленный из электрографита ЭГ-4. Для электроискровой обработки применяли мягкий режим с рабочим током 1,2-1,5А. Время обработки 1 см 2 покрытия 1 минута. При этом поверхность покрытия становилась матовой.

Микротвердость полученного покрытия составила 11,86 ГПа, т.е. увеличилась почти в 1,3 раза по сравнению кобальт-вольфрамовым покрытием, термообработанным при температуре 600°С в течение 1 часа (прототип).

Износостойкость изучалась на установке возвратно-поступательного движения конструкции ЛТИ (Вячеславов П.М., Шмелёва Н.М. Контроль электролитов и покрытий. Л: Машиностроение, 1985 (Б-чка гальванотехника. Изд. 5, Вып.11), 98 с.). Для сравнения синхронно проводилось испытание образца с кобальт-вольфрамовым покрытием, нанесенным из электролита, предложенного в прототипе, и термообработанным в течение 1 часа при температуре 600°С. Износ кобальт-вольфрамового покрытия составил 2,30 мкм/км. Износ предлагаемого покрытия, полученного в примере 1, получился 1,18 мкм/км.

Пример 2. Наносят предлагаемое покрытие на образец из стали У10А. Образец перед нанесением покрытия готовили также как в примере 1. Предлагаемое покрытие наносили в электролите с концентрацией компонентов, г/л:

При этом использовали режимы электроосаждения, аналогичные применяемым в примере 1. В результате электроосаждалось блестящее покрытие толщиной 74,8 мкм. Затем это полученное электролитическое покрытие смазывали 10% раствором гексацианоферрат(II) калия в глицерине и обрабатывали электроискровым способом также как в примере 1. При этом поверхность покрытия становилась матовой. Микротвердость полученного покрытия увеличилась в 1,4 раза и составила 12,87 ГПа, а износостойкость - в 3,9 раза по сравнению с износостойкостью кобальт-вольфрамового покрытия, электроосажденного из электролита, предложенного в прототипе и термообработанного в течение 1 часа при температуре 600°С.

Пример 3. Наносят предлагаемое покрытие на образец из стали У10А. Образец перед нанесением покрытия готовили также, как и в примерах 1 и 2. Предлагаемое покрытие наносили в электролите с максимальной концентрацией компонентов, г/л:

Для электроосаждения использовали режимы, полностью совпадающие с применяемыми режимами в примерах 1 и 2. В результате электроосаждалось полублестящее покрытие толщиной 87,1 мкм, имеющее состав: вольфрам 37,41% (по массе), карбид вольфрама 10,29%, остальное кобальт. Затем это полученное покрытие смазывали 10% раствором гексацианоферрат(II) калия в глицерине и обрабатывали электроискровым способом также, как в примерах 1 и 2. При этом поверхность покрытия становилась матовой. Микротвердость полученного покрытия составила 13,15 ГПа, износ - 0,53 мкм/км, т.е. уменьшился в 4,3 раза по сравнению с износом кобальт-вольфрамового покрытия, электроосажденного из электролита, предложенного в прототипе и термообработанного в течение 1 часа при температуре 600°С.

Установлено, что в полученном (предлагаемом) покрытии отсутствуют сквозные поры и трещины. Покрытие обладает высокой адгезией. Предлагаемое изобретение позволяет получить следующий технический результат: увеличить твердость и износостойкость покрытий.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Способ нанесения покрытий с карбидами вольфрама, включающий электролитическое осаждение из электролита, содержащего кобальт сернокислый, вольфрамат натрия и цитрат аммония, отличающийся тем, что в состав перемешиваемого электролита, имеющего рН 4-8 и температуру 55-65°С, дополнительно вводят карбид вольфрама при следующем соотношении компонентов, г/л: сульфат кобальта 12-15, вольфрамат натрия 40-100, цитрат аммония 40-60, карбид вольфрама 10-50, а осаждение проводят импульсным током плотностью 10 А/дм 2 , затем на полученное покрытие наносят смазку, состоящую из 10%-ного раствора гексацианоферрата (II) калия в глицерине, и выполняют электроискровую обработку графитовым электродом ЭГ-4 на мягком режиме рабочим током 1,2-1,5 А.