Случайные процессы виды представлений свойства. Реализация, сечение случайного процесса. Стационарно связанные СП

Функцию, значение которой при каждом значении независимой переменной является случайной величиной, называют случайной функцией. Случайные функции, для которых независимой переменной является время , называютслучайными процессами или стохастическими процессами .

Случайный процесс не есть определенная кривая, он является множеством определенных кривых , где , получаемых в результате отдельных опытов (рис. 1.9) . Каждую кривую этого множества называют реализацией случайного процесса . Сказать заранее, по какой из реализации пойдет процесс, невозможно.

Для любого фиксированного момента времени, например , реализация случайного процессапредставляет собой конкретную величину, значение же случайной функцииявляется случайной величиной, называемойсечением случайного процесса в момент времени . Поэтому нельзя утверждать, что случайный процесс в данный момент времени имеет такое-то детерминированное значение, можно говорить лишь о вероятности того, что в данный момент времени значение случайного процесса как случайной величины будет находиться в определенных пределах.

Рис. 1.9. Реализации случайного процесса

Статистические методы изучают не каждую из реализаций , образующих множество , а свойства всего множества в целом при помощи усреднения свойств, входящих в него реализаций. Поэтому при исследовании объекта управления судят о его поведении не по отношению к какому-либо определенному воздействию, представляющему заданную функцию времени, а по отношению к целой совокупности воздействий.

Как известно, статистические свойства случайной величины определяют по ее функции распределения вероятностей интегральной и дифференциальной .

Для случайного процесса также вводят понятие функции распределения и плотности вероятности, которые зависят от фиксированного момента времени наблюдения и от некоторого выбранного уровня, т.е. являются функциями двух переменных и.

Рассмотрим случайную величину , т.е. сечение случайного процесса в момент времени .Одномерной функцией распределения случайного процесса называют вероятность того, что текущее значение случайного процессав момент временине превышает некоторого заданного уровня (числа) , т.е.

Если функция имеет частную производную по, т.е.

то функцию называютодномерной плотностью вероятности случайного процесса. Величина

представляет собой вероятность того, что находится в момент временив интервале отдо.

В каждые отдельные моменты времени наблюдаемые случайные величины (сечения случайного процесса) будут иметь свои, в общем случае разные, одномерные функции распределенияи плотности вероятности.

Функции иявляются простейшими статистическими характеристиками случайного процесса. Они характеризуют случайный процесс изолированно в отдельных его сечениях, не раскрывая взаимной связи между сечениями случайного процесса, т.е. между возможными значениями случайного процесса в различные моменты времени.

Знания этих функций еще недостаточно для описания случайного процесса в общем случае. Необходимо охарактеризовать также взаимную связь случайных величин в различные произвольно взятые моменты времени.

Рассмотрим теперь случайные величины и, относящиеся к двум разным моментам времени и наблюдения случайного процесса.

Вероятность того, что случайный процесс будет не большеприи не больше при , т.е.

называют двумерной функцией распределения . Если функция имеет частные производные пои, т.е.

, (1.47)

то функцию называютдвумерной плотностью вероятности .

Величина

равна вероятности того, что прибудет находиться в интервале отдо, а при в интервале от до.

Аналогично можно ввести понятие о п-мерной функции распределения и п-мерной плотности вероятности .

Чем выше порядок , тем полнее описываются статистические свойства случайного процесса. Зная-мерную функцию распределения, можно найти по ней одномерную, двумерную и другие [вплоть до-й] функции распределения более низкого порядка. Однако многомерные законы распределения случайных процессов являются сравнительно громоздкими характеристиками и с ними крайне трудно оперировать на практике. Поэтому при изучении случайных процессов часто ограничиваются случаями, когда для описания случайного процесса достаточно знать только его одномерный или двумерный закон распределения.

Примером случайного процесса, который полностью характеризуется одномерной плотностью вероятности, является так называемый чистый случайный процесс , или белый шум . Значения в этом процессе, взятые в разные моменты времени, совершенно независимы друг от друга, как бы близко ни были выбраны эти моменты времени. Это означает, что кривая белого шума содержит всплески, затухающие за бесконечно малые промежутки времени. Поскольку значения, например, в моменты времениинезависимы, то вероятность совпадения событий, заключающихся в нахождениимежду и в момент времени и между и в момент , равна произведению вероятностей каждого из этих событий, поэтому

и вообще для белого шума

т. е. все плотности вероятности белого шума определяются из одномерной плотности вероятности.

Для случайных процессов общего вида, если известно, какие значения приняла величина в момент времени , тем самым имеем некоторую информацию относительно, где, так как величины и , вообще говоря, зависимы. Если кроме известна , где, то информация оеще более увеличивается. Таким образом, увеличение наших знаний о поведении процесса до моментаприводит к тому, что увеличивается информация о.

Однако существует особый класс случайных процессов, впервые исследованных известным математиком А. А. Марковым и называемых марковскими случайными процессами , для которых знание значения процесса в момент уже содержит в себе всю информацию о будущем ходе процесса, какую только можно извлечь из поведения процесса до этого момента. В случае марковского случайного процесса для определения вероятностных характеристик процесса в момент временидостаточно знать вероятностные характеристики для любого одного предшествующего момента времени, например непосредственно предшествующего момента времени. Знание вероятностных характеристик процесса для других предшествующих значений времени, например, не прибавляет информации, необходимой для нахождения.

Для марковского процесса справедливо следующее соотношение:

, (1.51)

т. е. все плотности вероятности марковского процесса определяются из двумерной плотности вероятности. Другими словами, марковские случайные процессы полностью характеризуются двумерной плотностью вероятности.

Понятие о функции распределения и плотности вероятности случайного процесса обычно используют при теоретических построениях и определениях. В практике исследования широкое распространение получили сравнительно более простые, хотя и менее полные характеристики случайных процессов, аналогичные числовым характеристикам случайных величин. Примерами таких характеристик служат математическое ожидание, дисперсия, среднее значение квадрата случайного процесса, корреляционная функция, спектральная плотность и другие.

Математическим ожиданием (средним значением) случайного процессаназывают величину

(1.52)

где - одномерная плотность вероятности случайного процесса .

Математическое ожидание случайного процесса представляет собой некоторую неслучайную (регулярную) функцию времени, около которой группируются и относительно которой колеблются все реализации данного случайного процесса (рис. 1.10).

Математическое ожидание случайного процесса в каждый фиксированный момент времени равно математическому ожиданию соответствующего сечения случайного процесса. Математическое ожидание называютсредним значением случайного процесса по множеству (средним по ансамблю, статистическим средним), поскольку оно представляет собой вероятностно усредненное значение бесконечного множества реализаций случайного процесса.

Рис. 1.10. Числовые характеристики случайных процессов

Часто вводят в рассмотрение центрированный случайный процесс

Тогда случайный процесс можно рассматривать как сумму двух составляющих: регулярной составляющей, равной математическому ожиданию, и центрированной случайной составляющей, т.е.

Для того чтобы учесть степень разбросанности реализации случайного процесса относительно его среднего значения, вводят понятие дисперсии случайного процесса, которая равна математическому ожиданию квадрата центрированного случайного процесса:

. (1.55)

Дисперсия случайного процесса является неслучайной (регулярной) функцией времени, значение которой в каждый момент времени равно дисперсии соответствующего сечения случайного процесса.

Среднее квадратическое отклонение случайного процесса равно

1.1.1. Гауссовские случайные процессы

гауссовским , если все его конечномерные распределения являются нормальными, то есть

t 1 ,t 2 ,…,t n T

случайный вектор

(X(t 1);X(t 2);…;X(t n))

имеет следующую плотность распределения:

,

где a i =MX(t i); =M(X(t i)-a i) 2 ; с ij =M((X(t i)-a i)(X(t j)-a j));
;

-алгебраическое дополнение элемента с ij .

1.1.2. Случайные процессы с независимыми приращениями

с независимыми приращениями , если его приращения на непересекающихся временных промежутках не зависят друг от друга:

t 1 ,t 2 ,…,t n T:t 1 ≤t 2 ≤…≤t n ,

случайные величины

X(t 2)-X(t 1); X(t 3)-X(t 2); …; X(t n)-X(t n-1)

независимы.

1.1.3. Случайные процессы с некоррелированными приращениями

Случайный процесс X(t) называется процессомс некоррелированными приращениями, если выполняются следующие условия:

1) tT: МX 2 (t) < ∞;

2) t 1 ,t 2 ,t 3 ,t 4 T:t 1 ≤t 2 ≤t 3 ≤t 4: М((X(t 2)-X(t 1))(X(t 4)-X(t 3)))=0.

1.1.4. Стационарные случайные процессы (см. Глава 5)

1.1.5. Марковские случайные процессы

Ограничимся определением марковского случайного процесса с дискретными состояниями и дискретным временем (цепь Маркова).

Пусть система А может находиться в одном из несовместных состояний А 1 ; А 2 ;…;А n , и при этом вероятность Р ij ( s ) того, что в s -ом испытании система переходит из состояния в состояние А j , не зависит от состояния системы в испытаниях, предшествующих s -1-ому. Случайный процесс данного типа называется цепью Маркова.

1.1.6. Пуассоновские случайные процессы

Случайный процесс X(t) называетсяпуассоновским процессом с параметром а (а>0), если он обладает следующими свойствами:

1) tT; Т=, стр. 155-161

[Л.2], стр. 406-416, 42-426

[Л.3], стр. 80-81

Математическими моделями случайных сигналов и помех являются случайные процессы. Случайным процессом (СП) называется изменение случайной величины во времени . К случайным процессам относится большинство процессов, протекающих в радиотехнических устройствах, а также помехи, сопровождающие передачу сигналов по каналам связи. Случайные процессы могут быть непрерывными (НСП), либо дискретными (ДСП) в зависимости от того, какая случайная величина непрерывная или дискретная изменятся во времени. В дальнейшем основное внимание будет уделено НСП.

Прежде чем приступить к изучению случайных процессов необходимо определится со способами их представления. Будем обозначать случайный процесс через , а его конкретную реализацию – через . Случайный процесс может быть представлен либо совокупностью (ансамблем) реализаций , либо одной , но достаточно протяженной во времени реализацией . Если сфотографировать несколько осциллограмм случайного процесса и фотографии расположить одну под другой, то совокупность этих фотографий будет представлять ансамбль реализаций (рис. 5.3).

Здесь – первая, вторая, …, k-ая реализации процесса. Если же отобразить изменение случайной величины на ленте самописца на достаточно большом интервале времени T, то процесс будет представлен единственной реализацией (рис. 5.3).

Как и случайные величины, случайные процессы описываются законами распределения и вероятностными (числовыми) характеристиками. Вероятностные характеристики могут быть получены как усреднение значений случайного процесса по ансамблю реализаций, так и усреднением по одной реализации.

Пусть случайный процесс представлен ансамблем реализаций (рис. 5.3). Если выбрать произвольный момент времени и зафиксировать значения, принимаемые реализациями в этот момент времени, то совокупность этих значений образует одномерное сечение СП

и представляет собой случайную величину . Как уже подчеркивалось выше, исчерпывающей характеристикой случайной величины является функция распределения или одномерная плотность вероятности

.

Естественно как , так и , обладают всеми свойствами функции распределения и плотности распределения вероятности, рассмотренными выше.

Числовые характеристики в сечении определяются в соответствии с выражениями (5.20), (5.22), (5.24) и (5.26). Так, в частности математическое ожидание СП в сечении определяется выражением

а дисперсия – выражением

Однако, законов распределения и числовых характеристик только в сечении недостаточно для описания случайного процесса, который развивается во времени. Поэтому, необходимо рассмотреть второе сечении (рис. 5.3). В этом случае СП будет описываться уже двумя случайными величинами и , разнесенными между собой на интервал времени и характеризоваться двумерной функцией распределения и двумерной плотностью , где , . Очевидно, если ввести в рассмотрение третье, четвертое и т.д. сечения, можно прийти к многомерной (N-мерной) функции распределения и соответственно к многомерной плотности распределения .

Важнейшей характеристикой случайного процесса служит автокорреляционная функция (АКФ)

устанавливающая степень статистической связи между значениями СП в моменты времени и

Представление СП в виде ансамбля реализаций приводит к понятию стационарности процесса. Случайный процесс является стационарным , если все начальные и центральные моменты не зависят от времени, т.е.

, .

Это жесткие условия, поэтому при их выполнении СП считается стационаром в узком смысле .

На практике используется понятие стационарности в широком смысле . Случайный процесс стационарен в широком смысле, если его математическое ожидание и дисперсия не зависят от времени, т.е.:

а автокорреляционная функция определяется только интервалом и не зависит от выбора на оси времени

В дальнейшем будут рассматриваться только стационарные в широком смысле случайные процессы.

Выше отмечалось, что случайный процесс помимо представления ансамблем реализаций, может быть представлен единственной реализацией на интервале времени T. Очевидно, все характеристики процесса могут быть получены усреднением значений процесса по времени.

Математическое ожидание СП при усреднении по времени определяется следующим образом:

. (5.46)

Отсюда следует физический смысл : математическое ожидание – это среднее значение (постоянная составляющая) процесса.

Дисперсия СП определяется выражением

и имеет физический смысл средней мощности переменной составляющей процесса.

Автокорреляционная функция при усреднении по времени

Случайный процесс называется эргодическим , если его вероятностные характеристики, полученные усреднением по ансамблю, совпадают с вероятностными характеристиками, полученными усреднением по времени единственной реализации из этого ансамбля. Эргодические процессы являются стационарными.

Использование выражений (5.46), (5.47) и (5.48) требует, строго говоря, реализации случайного процесса большой (теоретически бесконечной) протяженности. При решении практических задач интервал времени ограничен. При этом большинство процессов считают приблизительно эргодическими и вероятностные характеристики определяют в соответствии с выражениями

; (5.49)

;

Случайные процессы, у которых исключено математическое ожидание, называются центрированными . В дальнейшем под и будут подразумеваться значения центрированных случайных процессов. Тогда выражения для дисперсии и автокорреляционной функции принимают вид

; (5.50)

Отметим свойства АКФ эргодических случайных процессов:

– автокорреляционная функция является вещественной функцией аргумента ,

– автокорреляционная функция является четной функцией, т.е. ,

– при увеличении АКФ убывает (необязательно монотонно) и при стремится к нулю,

– значение АКФ при равно дисперсии (средней мощности) процесса

.

На практике часто приходится иметь дело с двумя и более СП. Так например, на вход радиоприемника одновременно поступает смесь случайного сигнала и помехи. Взаимную связь между двумя случайными процессами устанавливает взаимная корреляционная функция (ВКФ). Если и – два случайных процесса, характеризующиеся реализациями и , то взаимная корреляционная функция определяется выражением

Глава 1. Основные понятия теории случайных процессов

Определение случайного процесса. Основные подходы к заданию

Случайных процессов. Понятие реализации и сечения.

Элементарные случайные процессы.

Случайным (стохастическим, вероятностным) процессом называется функция действительного переменного t, значениями которой являются соответствующие случайные величины X(t).

В теории случайных процессов t трактуется как время, принимающее значения из некоторого подмножества Т множества действительных чисел (t T, T R).

В рамках классического математического анализа под функцией y=f(t) понимается такой тип зависимости переменных величин t и y, когда конкретному числовому значению аргумента t соответствует и притом единственное числовое значение функции y. Для случайных процессов ситуация принципиально иная: задание конкретного аргумента t приводит к появлению случайной величины X(t) с известным законом распределения (если это дискретная случайная величина) или с заданной плотностью распределения (если это непрерывная случайная величина). Другими словами, исследуемая характеристика в каждый момент времени носит случайный характер с неслучайным распределением.

Значения, которые принимает обычная функция y=f(t) в каждый момент времени, полностью определяет структуру и свойства этой функции. Для случайных процессов дело обстоит совершенно иным образом: здесь совершенно не достаточно знать распределение случайной величины X(t) при каждом значении t, необходима информация об ожидаемых изменениях и их вероятностях, то есть информация о степени зависимости предстоящего значения случайного процесса от его предыстории.

Наиболее общий подход в описании случайных процессов состоит в задании всех его многомерных распределений, когда определена вероятность одновременного выполнения следующих событий:

t 1 , t 2 ,…,t n T, n N: X(t i) x i ; i=1,2,…,n;

F(t 1 ;t 2 ;…;t n ;x 1 ;x 2 ;…;x n) = P(X(t 1)≤x 1 ; X(t 2)≤x 2 ;…; X(t n)≤x n).

Такой способ описания случайных процессов универсален, но весьма громоздок. Для получения существенных результатов выделяют наиболее важные частные случаи, допускающие применение более совершенного аналитического аппарата. В частности, удобно рассматривать случайный процессX(t, ω) как функцию двух переменных: t T, ω Ω , которая при любом фиксированном значении t T становится случайной величиной, определенной на вероятностном пространстве (Ω, AА, P), где Ω - непустое множество элементарных событий ω; AА - σ-алгебра подмножеств множества Ω, то есть множество событий; P - вероятностная мера, определенная на AА.

Неслучайная числовая функция x(t)=X(t, ω 0) называется реализацией (траекторией) случайного процесса X(t, ω).

Сечением случайного процесса X(t, ω) называется случайная величина, которая соответствует значению t=t 0 .

Если аргумент t принимает все действительные значения или все значения из некоторого интервала T действительной оси, то говорят о случайном процессе с непрерывным временем . Если t принимает только фиксированные значения, то говорят о случайном процессе с дискретным временем .

Если сечение случайного процесса - дискретная случайная величина, то такой процесс называется процессом с дискретными состояниями . Если же любое сечение - непрерывная случайная величина, то случайный процесс называется процессом с непрерывными состояниями .

В общем случае задать случайный процесс аналитически невозможно. Исключение составляют так называемые элементарные случайные процессы , вид которых известен, а случайные величины входят как параметры:

X(t)=Х(t,A 1 ,…,A n), где A i , i=1,…,n - произвольные случайные величины с конкретным распределением.

Пример 1 . Рассматривается случайный процесс X(t)=A·e - t , где А - равномерно распределенная дискретная случайная величина, принимающая значения {-1;0;1}; t≥0. Изобразить все его реализации случайного процесса X(t) и показать сечения в моменты времени t 0 =0; t 1 =1; t 2 =2.

Решение.

Данный случайный процесс является процессом с непрерывным временем и дискретными состояниями. При t=0 сечением случайного процесса X(t) является дискретная случайная величина А{-1;0;1}, распределенная равномерно.

При t=0 сечением случайного процесса X(t) является дискретная случайная величина А{-1;0;1}, распределенная равномерно.

При t=1 сечением случайного процесса X(t) является дискретная случайная величина {-1/е;0;1/е}., распределенная равномерно.

При t=2 сечением случайного процесса X(t) является дискретная случайная величина {-1/е 2 ;0;1/е 2 }., распределенная равномерно.

Пример 2 . Рассматривается случайный процесс X(t)=sin At, где А - дискретная случайная величина, принимающая значения {0;1;2}; аргумент t принимает дискретные значения {0; π/4; π/2; π }. Изобразить графически все реализации и сечения данного случайного процесса.

Решение.

Данный случайный процесс является процессом с дискретным временем и дискретными состояниями.

Процессов

Функция вида

Функция вида

Решение.

Математическое ожидание: m Y (t)=M(Xe - t)=e - t m X =me - t .

Дисперсия: D Y (t)=D(Xe - t)=e -2 t DX=σ 2 e -2 t .

Стандартное отклонение:

Корреляционная функция: K Y (t 1 ; t 2)=M((X e - t 1 -m e - t 1)×(X e - t 2 -m e - t 2))=

E -(t 1+ t 2) M(X-m) 2 =σ 2 e -(t 1+ t 2) .

Нормированная корреляционная функция:

По условию задачи случайная величина X распределена нормально; при фиксированном значении t сечение Y(t) линейно зависит от случайной величины X, и по свойству нормального распределения сечение Y(t) также распределено нормально с одномерной плотностью распределения:

Пример 4. Найти основные характеристики случайного процесса Y(t)=W×e - Ut (t>0), где W и U - независимые случайные величины; U распределена равномерно на отрезке ; W имеет математическое ожидание m W и стандартное отклонение σ W .

Решение.

Математическое ожидание: m Y (t)=M(We - Ut)=MW×M(e - Ut)=m w ×*M(e - Ut);

, (t>0).

Корреляционная функция:

так как

Дисперсия:

Пример 5. Найти одномерный закон распределения случайного процесса: Y(t)=Vcos(Ψt-U), где V и U независимые случайные величины; V нормально распределена с параметрами (m V ; σ V); Ψ-const; U- равномерно распределена на отрезке .

Решение.

Математическое ожидание случайного процесса Y(t):

Дисперсия:

Стандартное отклонение:

Переходим к выводу одномерного закона распределения. Пусть t-фиксированный момент времени, и случайная величина U принимает фиксированное значение U=u - const; u , тогда получаем следующие условные характеристики случайного процесса Y(t):

M(Y(t)| U=u)=m V ×cos(Ψt-u);

D(Y(t)| U=u)= ×cos 2 (Ψt-u);

σ(Y(t)| U=u)= ×|cos(Ψt-u)|.

Так как случайная величина V распределена нормально и при заданном значении случайной величины U=u все сечения линейно зависимы, то условное распределение в каждом сечении является нормальным и имеет следующую плотность:

Безусловная одномерная плотность случайного процесса Y(t):

Очевидно, что это распределение уже не является нормальным.

Сходимость и непрерывность

Сходимость по вероятности.

Говорят, что последовательность случайных величин {Х n } сходится по вероятности к случайной величине Х при n®¥, если

Обозначение:

Обратите внимание, что при n®¥ имеет место классическая сходимость вероятности к 1, то есть с возрастанием номера n можно гарантировать сколь угодно близкие к 1 значения вероятности. Но при этом нельзя гарантировать близости значений случайных величин Х n к значениям случайной величины Х ни при каких сколь угодно больших значениях n, поскольку мы имеем дело со случайными величинами.

стохастически непрерывным в точке t 0 T, если

3. Сходимость в среднем в степени p³1.

Говорят, что последовательность случайных величин {X n } сходится в среднем в степени 1 к случайной величине Х, если

Обозначение: X n X.

В частности, {X n } сходится в среднеквадратичном к случайной величине Х, если

Обозначение:

Случайный процесс X(t), t T называется непрерывным в среднеквадратичном в точке t 0 T, если

4. Сходимость почти наверное (сходимость с вероятностью единица).

Говорят, что последовательность случайных величин {Х n } сходится почти наверное к случайной величине Х, если

где ωÎW - элементарное событие вероятностного пространства (W, AА, Р).

Обозначение: .

Слабая сходимость.

Говорят, что последовательность { F Xn (x)} функций распределения случайных величин Х n слабо сходится к функции распределения F X (x) случайной величины Х, если имеет место поточечная сходимость в каждой точке непрерывности функции F X (x).

Обозначение: F Xn (x)Þ F X (x).

Решение.

1) Математическое ожидание, дисперсия, стандартное отклонение, корреляционная функция и нормированная корреляционная функция случайного процесса X(t) имеют вид (см. Пример 3 ):

2) Переходим к расчету характеристик случайного процесса X ’ (t). В соответствии с Tтеоремами 1-3 получаем:

За исключением математического ожидания (которое поменяло знак), все остальные характеристики сохранились полностью. Взаимные корреляционные функции случайного процесса X(t) и его производной X ’ (t) имеют вид:

3) В соответствии с Теоремами 41-64 основные характеристики интеграла от случайного процесса X(t) имеют следующие значения:

D (t1;t2)=?????????????

Взаимные корреляционные функции случайного процесса X(t) и его интеграла Y(t):

Выражение вида

,

где φ ik (t), k=1;2;…-неслучайные функции; V i , k=1;2;…-некоррелированные центрированные случайные величины, называется каноническим разложением случайного процесса X(t), при этом случайные величины V i называются коэффициентами канонического разложения; а неслучайные функции φ ki (t) - координатными функциями канонического разложения.

Рассмотрим характеристики случайного процесса

Так как по условию то

Очевидно, что один и тот же случайный процесс имеет различные виды канонического разложения в зависимости от выбора координатных функций. Более того, даже при состоявшемся выборе координатных функций существует произвол в распределении случайных величин V к. На практике по итогам экспериментов получают оценки для математического ожидания и корреляционной функции: . После разложения в двойной ряд Фурье по координатным функциям φ к (t):

получают значения дисперсий D Vk случайных величин V k .

Пример 7 . Случайный процесс Х(t) имеет следующее каноническое разложение: , где V k -нормально распределенные некоррелированные случайные величины с параметрами (0; σ к); m 0 (t) - неслучайная функция. Найти основные характеристики случайного процесса Х(t), включая плотности распределения.

Решение.

Из полученных ранее общих формул имеем:

В каждом сечении случайный процесс Х(t) имеет нормальное распределение, так как является линейной комбинацией некоррелированных нормально распределенных случайных величин V k , при этом одномерная плотность распределения имеет вид:

Двумерный закон распределения также является нормальным и имеет следующую двумерную плотность распределения:

Пример 8. Известныо математическое ожидание m X (t) и корреляционная функция К X (t 1 ;t 2)=t 1 t 2 случайного процесса Х(t), где . Найти каноническое разложение Х(t) по координатным функциям при условии, что коэффициенты разложения V k - нормально распределенные случайные величины.

Решение.

Корреляционная функция имеет следующее разложение

следовательно,

;

;

Так как ,

то ; .

Плотность распределения случайных величин V k:

Каноническое разложение случайного процесса Х(t) имеет вид:

.

Узком и широком смыслах.

Значительное число происходящих в природе событий, в частности, связанных с эксплуатацией технических устройств, носит «почти» установившиейся характер, то есть картина таких событий, подверженных незначительным случайным флуктуациям, тем не менее, в целом с течением времени сохраняется. В этих случаях принятно говорить о стационарных случайных процессах.

Например, летчик выдерживает заданную высоту полета, но разнообразные внешние факторы (порывы ветра, всходящие потоки, изменение тяги двигателей и т.п.) приводят к тому, что высота полета колеблется около заданного значения. Другим примером могла бы служить траектория движения маятника. Если бы он был предоставлен сам себе, то при условии отсутствия систематических факторов, приводящих к затуханию колебаний, маятник находился бы в режиме установившихся колебаний. Но различные внешние факторы (порывы ветра, случайные колебания точки подвеса и т.п.), не меняя в целом параметров колебательного режима, тем не менее делают характеристики движения не детерминированными, а случайными.

Стационарным (однородным во времени) называют случайный процессСП, статистические характеристики которого не меняются с течением времени, то естьт.е. являются инвариантными относительно временных и сдвигов.

Различают случайные процессыСП стационарные в широком и узком смысле.

Таких, что

Выполняется условие

F(t 1 ; t 2 ;… ;t n ; x 1 ; x 2 ;…; x n)=F(t 1 +τ; t 2 +τ;… ;t n +τ; x 1 ; x 2 ;…; x n),

и, следовательно, все n-мерные распределения зависят не от моментов времени t 1 ; t 2 ;… ;t n , а от n-1 длительности временных промежутков τ i ;:

В частности, одномерная плотность распределения вообще не зависит от времени t:

двумерная плотность сечений в моменты времени t 1 и t 2

n-мерная плотность сечений в моменты времени t 1 ; t 2 ...; t n:

Случайный процессСП Хx(t) называется стационарным в широком смысле, если его моменты первого и второго порядка инвариантны относительно временного сдвига, то есть его математическое ожидание не зависит от времени t и является константой, а корреляционная функция зависит только от длины временного промежутка между сечениями:

Очевидно, что стационарный случайный процессССП в узком смысле является стационарным случайным процессомССП и в широком смысле;, обратное утверждение не верно.

ПроцессаССП

2. 3. Корреляционная функция стационарного случайного процессаССП четна:

Поскольку она обладает следующей симметрией

4. Дисперсия стационарного случайного процесса ССП есть константа, равная

знзнаачению ее корреляционной функции в точке :

6. Корреляционная функция стационарного случайного процессаССП является

положительно определенной, то есть

Нормированная корреляционная функция стационарного случайного процессаССП также четна, положительно определена и при этом

Пример 11. Найти характеристики и сделать вывод о типе случайного процессаСП Хx(t):

гГде U 1 иb U 2 - некоррелированные случайные величиныСВ;

Решение.

Следовательно, случайный процесс Х(t) является стационарным в широком смысле. Как следует из Ппримера 10… , если U 1 и U 2 независимые, центрирование и нормально распределенные случайные величиныСВ, то случайный процессСП также является стационарным в широком смысле.

Пример 12. Доказать, стационарность в широком смыслечто случайного процессаСП Хx(t) является стационарным в широком смысле:

где V и независимые случайные величиныСВ; MV=m vV - const; - норравномерномально распределенная на отрезке случайная величинаСВ;

Решение.

Запишем Хx(t) следующим образом:

Так как случайная величина равномерно распределена на отрезке , то плотность распределения имеет вид:

следовательно,

Получаем

Так как cлучайный процессСП Хx(t) имеет постоянные математическое ожидание и дисперсию, а корреляционная функция является функцией , то вне зависимости от закона распределения случайной величиныСВ V М случайный процессСП Х x(t) является стационарным в широком смысле.

Стационарно связанные СП

Cлучайные процессыСП X(t)X(t) и Y(t)Y(t) называются стационарно связанными, если их взаимная корреляционная функция зависит только от разности аргументов τ =t 2 -t 1:

R x XY y (t 1 ;t 2)=r x XY y (τ).

Стационарность самих случайных процессов СП X(t) X(t) и Y(t) Y(t) не означает их стационарной связанности.

Отметим основные свойства стационарно связанных случайных процессовСП, производной и интеграла от стационарных случайных процессовССП,

1) 1) rR x XYy (τ)=rR y YXx (-τ).

2) 2)

3) 3)

где

5) 5) где

6) 6) ;

Пример 13. Корреляционная функция стационарного случайного процессаССП X(t)X(t) имеет вид

Найти корреляционные функции, дисперсии, взаимные корреляционные функции случайных процессовСП X(t), X’(t), .

Решение.

Ограничимся анализом случая значениями D x Х (t)=1.

Воспользуемся следующим соотношением:

Получаем:

Обратите внимание, что в результатепри дифференцированияи стационарный случайный процессССП X(t) переходит в стационарный случайный процессССП X’(t) , при этом X(t) и X’(t) стационарно связаны. При интегрировании стационарного случайного процессаССП X(t) возникает нестационарный случайный процессСП Y(t), и при этом X(t) и Y(t) не являются стационарно связанными.

И их характеристики

Среди стационарных случайных процессовССП есть особый класс процессов, называемых эргодическими , которые обладают следующими свойствоами: их характеристики, полученные усреднением множества всех реализаций,совпадают с соответствующими характеристиками, полученными усреднением по времени одной реализации, наблюдаемой на интервале (0, T) достаточно большой продолжительности. То есть на достаточнобольшом временном промежутке любая реализация проходит через любое состояние независимо от того, каково было исходное состояние системы при t=0; и в этом смысле любая реализация полностью представляет всю совокупность реализаций.

Широкое практическое использование при исследовании состояния разных технических объектов получили три типа случайных процессов - гауссовский, стационарный и марковский.

Гауссовский случайный процесс - это случайный процесс X(t), распределение вероятностей параметров которого подчиняется нормальному закону. Математическое ожидание (среднее значение)М[Х(t)] и корреляционная функция K х (t 1 ,t 2) однозначно определяют распределение его параметров, следовательно, и процесс в целом.

Стационарный случайный процесс (однородный во времени случайный процесс) - это такой случайный процесс X(t), статистические характеристики которого постоянны во времени, то есть инвариантны к кратковременным возмущениям: t → t + τ, X(t) → X(t + τ) при любом фиксированном значении τ. Процесс полностью определяется математическим ожиданием M и корреляционной функцией

К х (t,τ) = M.

Марковский случайный процесс - это такой случайный процесс, при котором вероятность нахождения системы в каком-либо состоянии в будущем зависит от того, в каком состоянии система находится в заданный момент времени и не зависит от того, каким путем система перешла в это состояние. Короче - «будущее» и «прошлое» процесса при известном его «настоящем» не связаны друг с другом. Часто марковский процесс характеризуется вероятностями перехода системы из одного состояния в другое (переходными вероятностями).

Изменение технического состояния системы

Как уже говорилось, задача прогнозирования технического состояния, в самом общем понимании, представляет собой получение некоторых вероятностных характеристик работоспособности системы в будущем на основе данных контроля ее настоящего и прошедших состояний.

В зависимости от того, какая характеристика случайного процесса определяется при прогнозировании, различают прогнозирование надежности (определение условной плотности вероятности безотказной работы системы после контроля) и прогнозирование технического состояния (определение условной плотности распределения вероятностей значений определяющего параметра) на основе прошлых и настоящего состояний. На рис 8.1 проиллюстрирована разница между этими характеристиками. На этом рисунке x(t) - отрезок реализации случайного процесса X(t), описывающий изменение во времени некоторого определяющего параметра системы, имеющего допустимые границы (а, b) изменения. Отрезок реализации получен в результате наблюдения за конкретным экземпляром системы из заданного класса систем на интервале времени (0, t k 2). В момент t k 2 был осуществлен последний контроль системы, и на его основе необходимо решить - пригодна ли система к эксплуатации до наступления очередного момента контроля t k 3 .



рис. 8.1 Условная плотность вероятности безотказной работы р{x(t)} и f{(x(t)} условная плотность распределения вероятностей значений определяющего параметра

В связи с тем, что внешние воздействия, воспринимаемые системой, имеют случайный характер, случайный процесс после момента t k 2 может изменяться по разному (см. пунктирные линии на рис. 8.1). Процесс, являющийся продолжением некоторого исходного процесса при условии, что на интервале (0,t k 2) его реализация имела конкретный вид х(t), называется условным , или апостериорным , случайным процессом:

Х ps (t)=x. (8.5)

Следовательно, для принятия обоснованного решения о назначении срока очередного контроля системы необходимо знать характеристики апостериорного случайного процесса. Пригодной для выполнения задачи будет считаться система, определяющие параметры которой находятся в допустимых границах (а, b) в момент предыдущего контроля и не выйдут из этих границ до конца заданного срока функционирования. Поскольку выход определяющих параметров за допустимые границы является случайным событием, то оценкой работоспособности системы может быть условная вероятность безотказной ее работы после контроля. Это вероятность того, что случайный процесс ни разу не пересечет границу (a, b) после момента контроля; ее называют прогнозированной надежностью системы и обозначают

P{x(t)=<<(ba)/X(t)=x(t), 0<

Таким образом, прогнозированием надежности называется определение условной вероятности безотказной работы системы при условии, что в момент контроля она находилась в некотором фиксированном работоспособном состоянии.

Наиболее полной характеристикой будущего технического состояния системы является условная плотность распределения вероятностей ее определяющих параметров, то есть будущих значений случайного процесса

f{x(t k 3)/X(t)=x(t), 0<

при условии, что на интервале (0,t k 3) реализация процесса имела конкретный вид (рис. 8.1).