История развития возобновляемых источников энергии. Практика использования ВИЭ в мире. К середине столетия ВИЭ обеспечат весь мир электроэнергией

по дисциплине:

"Основы энергосбережения"

Тема: "Возможности использования нетрадиционных и возобновляемых источников энергии"

Введение

Виды нетрадиционных возобновляемых источников энергии и технологии их освоения

Использование возобновляемых источников энергии

Возобновляемые источники энергии в России до 2010 года

Роль нетрадиционных и возобновляемых источников энергии при реформировании электроэнергетического комплекса Свердловской области

Заключение

Список литературы

Введение

При существующем уровне научно-технического прогресса энергопотребление может быть покрыто лишь за счет использования органического топлива (уголь, нефть, газ), гидроэнергии и атомной энергии на основе тепловых нейтронов. Однако, по результатам многочисленных исследований органическое топливо к 2020 г. может удовлетворить запросы мировой энергетики только частично. Остальная часть энергопотребности может быть удовлетворена за счет других источников энергии - нетрадиционных и возобновляемых.

Возобновляемые источники энергии - это источники на основе постоянно существующих или периодически возникающих в окружающей среде потоков энергии. Возобновляемая энергия не является следствием целенаправленной деятельности человека, и это является ее отличительным признаком.

Невозобновляемые источники энергии - это природные запасы веществ и материалов, которые могут быть использованы человеком для производства энергии. Примером могут служить ядерное топливо, уголь, нефть, газ. Энергия невозобновляемых источников, в отличие от возобновляемых, находится в природе в связанном состоянии и высвобождается в результате целенаправленных действий человека.

В соответствии с резолюцией № 33/148 Генеральной Ассамблеи ООН (1978 г) к нетрадиционным и возобновляемым источникам энергии относятся: солнечная, ветровая, геотермальная, энергия морских волн, приливов и океана, энергия биомассы, древесины, древесного угля, торфа, тяглового скота, сланцев, битуминозных песчаников и гидроэнергия больших и малых водотоков.

Основным видом "бесплатной" неиссякаемой энергии по справедливости считается Солнце . Оно ежесекундно излучает энергию в тысячи миллиардов раз большую, чем при ядерном взрыве 1 кг урана (U2351).

Самый простой способ использования энергии Солнца - солнечные коллекторы, в состав которых входит поглотитель (зачерненный металлический, чаще всего алюминиевый лист с трубками, по которым протекает теплоноситель). Коллекторы устанавливаются неподвижно на крышах домов под углом к горизонту, равным широте местности или монтируются в кровлю. В зависимости от условий инсоляции в коллекторах теплоноситель нагревается на 40-50° больше, чем температура окружающей среды. Такие системы применяются в индивидуальном жилье, практически полностью покрывая потребность населения в горячей воде; в районных отопительных установках, а также для получения технологической тепловой энергии в промышленности. Солнечные коллекторы производятся во многих городах России, и стоимость их вполне доступна.

Электроэнергия от светового потока может производиться двумя путями: путем прямого преобразования в фотоэлектрических установках, либо за счет нагрева теплоносителя, который производит работу в том или ином термодинамическом цикле. Прямое фотоэлектрическое преобразование солнечного излучения в электрическую энергию используется на фотоэлектрических или солнечных станциях, работающих параллельно с сетью, а также в составе гибридных установок для автономных систем ("экодомов" и пр.). Возможно также комбинированное производство электрической и тепловой энергии. В перспективе предполагается, что солнечной энергии будет придаваться большое значение вследствие ее щадящего воздействия на окружающую среду по сравнению с большинством других источников энергии. Это со временем выльется в относительную экономичность, однако пока удельные капитальные вложения в фотоэлектрические установки превышают традиционные в пять и более раз.

Скорость и направление ветра меняются подчас очень быстро и непредсказуемо, что делает его менее "надежным", чем Солнце. Таким образом, возникают две проблемы, которые необходимо решить в целях полноценного использования энергии ветра. Во-первых, это возможность "ловить" кинетическую энергию ветра с максимальной площади. Во-вторых, еще важнее добиться равномерности, постоянства ветрового потока. Вторая проблема пока решается с трудом. Может быть, одним из решений станет внедрение новой технологии по созданию и использованию искусственных вихревых потоков.

Наиболее распространенным типом ветровых установок (ВЭУ) является турбина крыльчатого типа с горизонтальным валом и числом лопастей от 1 до 3 в фиксированном положении с небольшой регулировкой угла наклона. Турбина, мультипликатор и электрогенератор размещаются в гондоле, установленной на верху мачты. В последних моделях ВЭУ используются асинхронные генераторы переменной мощности, а задачу кондиционирования вырабатываемой энергии выполняет электроника. Распространение крыльчатых ветроагрегатов объясняется величиной скорости их вращения, возможностью соединяться непосредственно с генератором электрического тока без мультипликатора и высоким коэффициентом использования энергии ветра.

Другая популярная разновидность ВЭУ - карусельные ветродвигатели. Они тихоходны, и это позволяет использовать простые электрические схемы, например, с асинхронным генератором, без риска потерпеть аварию при сильном порыве ветра. Тихоходность выдвигает одно ограничивающее требование - использование многополюсного генератора, работающего на малых оборотах. Такие генераторы не имеют широкого распространения, а использование мультипликаторов неэффективно из-за низкого КПД последних. Карусельный лопастный ветродвигатель наиболее прост в эксплуатации. Его конструкция обеспечивает максимальный момент при запуске ветродвигателя и автоматическое саморегулирование максимальной скорости вращения в процессе работы. Еще более важным преимуществом карусельной конструкции стала ее способность без дополнительных ухищрений следить за тем, "откуда дует ветер", что весьма существенно для приземных рыскающих потоков.

Экономический потенциал малых и мини-ГЭС составляет примерно 10% от общего экономического потенциала. Но используется этот потенциал менее чем на 1%. Сейчас начинается процесс восстановления разрушенных и строительства новых малых и мини-ГЭС. Однако малые ГЭС, построенные путем полного перегораживания русла рек плотинами, обладают всеми недостатками наших гигантов энергетики (ГЭС) и строго говоря, вряд ли могут быть отнесены к экологически чистым видам энергии.

Бесплотинные микро-ГЭС для речек, речушек и даже ручьев существуют уже давно. Бесплотинная ГЭС мощностью в 0,5 КВт. в комплекте с аккумулятором обеспечит энергией крестьянское хозяйство или геологическую экспедицию, отгонное пастбище или небольшую мастерскую. Роторная установка диаметром 300 мм и весом всего 60 кг выводится на стремнину, притапливается на придонную "лыжу" и тросами закрепляется с двух берегов. Бесплотинная мини-ГЭС, успешно зарекомендовавшая себя на речках Горного Алтая, доработана до уровня опытного образца.

Волновая энергия . В структуре возобновляемых энергоресурсов весьма перспективным энергоносителем являются океанские волны. Специалисты утверждают, что уже сейчас за счет энергии океанских волн возможно получение электроэнергии производительностью до 10 млрд. кВт. Это лишь незначительная доля совокупной мощности волн морей и океанов Земли. Вместе с тем она больше мощности всех электростанций, работавших на земле в 1990 г. Наиболее совершенен проект "Кивающая утка", предложенный конструктором С. Солтером (S. Salter, Эдинбургский университет, Шотландия). Поплавки, покачиваемые волнами, дают энергию стоимостью всего 2,6 пенса за 1 кВт/ч, что лишь незначительно выше стоимости электроэнергии, которая вырабатывается новейшими электростанциями, сжигающими газ (в Британии это - 2,5 пенса), и заметно ниже, чем дают АЭС (около 4,5 пенса за 1 кВт/ч).

Энергию приливов вполне можно "приручить" на приливных ГЭС, которые демонстрируют достаточно хорошие экономические показатели, но ресурс их ограничен - требуются специфические природные условия - узкий вход в бухту и т.п. Совокупная энергия приливов оценивается в 0,09*1015 кВт*час в год.

Геотермальная энергия , строго говоря, не является возобновляемой, поскольку речь идет не об использовании постоянного потока тепла, поступающего из недр к поверхности (в среднем 0,03 Вт/м2), а об использовании тепла, запасенного жидкими или твердыми средами, находящимися на определенных глубинах. Мировые запасы геотермальной энергии составляют: для получения электроэнергии - 22400 ТВт*ч/год, для прямого использования - более 140 ТДж/год тепла. Существующие геотермальные электростанции (геоТЭС) представляют собой одноконтурные системы, в которых геотермальный пар непосредственно работает в паровой турбине, или двухконтурные с низкокипящим рабочим телом во втором контуре.

Биомасса представляет собой весьма широкий класс энергоресурсов. Ее энергетическое использование возможно через сжигание, газификацию (термохимические газогенераторы, перерабатывающие твердые органические отходы в газообразное топливо), пиролиз и биохимическую переработку анаэробного сбраживания жидких отходов с получением спиртов или биогаза. Каждый из этих процессов имеет свою область применения и назначение.

Некоммерческое использование биомассы (проще говоря, сжигание дров) наносит большой ущерб окружающей среде. Хорошо известны проблемы обезлесевания и опустынивания в Африке, сведения тропических лесов в Южной Америке. С другой стороны, использование древесины от энергетических плантаций является примером получения энергии от органического сырья с суммарными нулевыми выбросами диоксида углерода.

Новости о рекордах в области использования ВИЭ не сходят с новостных лент в последние несколько лет. По информации Международного агентства по возобновляемой энергетике (IRENA), в период 2013-2015 годов доля ВИЭ в новых мощностях в электроэнергетике уже составляет 60%. Ожидается, что еще до 2030 года возобновляемые сместят уголь на второе место и выйдут в лидеры в балансе генерации электроэнергии (по прогнозу МЭА, треть объемов электроэнергии к этому году будет производиться с помощью ВИЭ). С учетом динамики ввода новых мощностей эта цифра выглядит не слишком фантастической - в 2014 году доля возобновляемых в мировом производстве электроэнергии составляла 22,6%, а в 2015 году - 23,7%.

Однако под общим термином ВИЭ скрываются очень разные источники энергии. С одной стороны, это давно и успешно эксплуатируемая крупная гидроэнергетика, а с другой - относительно новые виды - такие как солнечная энергетика, ветер, геотермальные источники и даже совсем экзотическая энергия волн океана. Доля гидроэнергетики в выработке электроэнергии в мире остается стабильной - 18,1% в 1990 году, 16,4% в 2014 году и примерно такая же цифра в прогнозе на 2030 год. Двигателем стремительного роста ВИЭ за последние 25 лет стали именно «новые» виды энергии (прежде всего, солнечная и ветроэнергетика) - их доля увеличилась с 1,5% в 1990 году до 6,3% в 2014 году и предположительно догонит гидроэнергетику в 2030 году, достигнув 16,3%.

Несмотря на такие бурные темпы развития ВИЭ, остается довольно много скептиков, сомневающихся в устойчивости этого тренда. Например, Пер Виммер, в прошлом сотрудник инвестиционного банка Goldman Sachs, а ныне основатель и руководитель собственной инвестиционно-консалтинговой компании Wimmer Financial LLP, считает, что ВИЭ - это «зеленый пузырь», аналогичный пузырю доткомов 2000 года и ипотечному кризису в США 2007-2008 годов. Интересно, что Пер Виммер - гражданин Дании, страны, которая уже давно является лидером в секторе ветроэнергетики (в 2015 году на датских ветряных электростанциях было произведено 42% потребленной в стране электроэнергии) и стремится стать самым «зеленым» государством если не в мире, то уж точно в Европе. Дания планирует полностью отказаться от использования ископаемых источников топлива к 2050 году.

Основной аргумент Виммера состоит в том, что энергия ВИЭ является коммерчески неконкурентоспособной, а проекты с ее использованием - неустойчивыми в долгосрочной перспективе. То есть «зеленая» энергия - слишком дорогая по сравнению с традиционной, и развивается она только благодаря государственной поддержке. Высокая доля долгового финансирования в проектах ВИЭ (до 80%) и его растущая стоимость приведут, по мнению эксперта, либо к банкротству компаний, реализующих проекты в сфере «зеленой» энергетики, либо к необходимости выделения все большего объема средств государственной поддержки для удержания их на плаву. Однако Пер Виммер не отрицает, что ВИЭ должны играть свою роль в энергообеспечении планеты, но государственную поддержку предлагает оказывать только тем технологиям, которые имеют шанс стать коммерчески рентабельными в течение следующих 7-10 лет.

Сомнения Виммера не беспочвенны. Наверное, один из самых драматичных примеров - это компания SunEdison, которая в апреле 2016 года подала заявление о банкротстве. До этого момента SunEdison была одной из самых быстро растущих американских компаний в области ВИЭ, стоимость которой летом 2015 года оценивалась в $10 млрд. Только за три года, предшествующих банкротству, компания инвестировала в новые приобретения $18 млрд, а всего было привлечено $24 млрд акционерного и заемного капитала.

Перелом в отношении инвесторов наступил, когда SunEdison неудачно попыталась поглотить за $2,2 млрд компанию Vivint Solar Inc, занимающуюся установкой солнечных панелей на кровли домов, что совпало со снижением цен на нефть. В результате цена акций SunEdison упала с пиковых значений (более $33 в 2015 году) до 34 центов в момент подачи заявления о банкротстве. История SunEdison - тревожный, но не однозначный сигнал для индустрии. Согласно оценкам аналитиков, проекты у компании были «хорошие», а причина банкротства была в слишком быстром росте и больших долгах.

Однако динамика индекса MAC Global Solar Energy Stock Index (индекс, который отслеживает изменение котировок акций более 20 публичных компаний, работающих в секторе солнечной энергетики со штаб-квартирами в США, Европе и Азии) за последние четыре года также не внушает оптимизма.

Вопрос о субсидиях тоже выглядит неоднозначным. С одной стороны, объем государственной поддержки ВИЭ в мире растет с каждым годом (в 2015 году, по оценкам МЭА, он приблизился к $150 млрд, 120 из которых приходились на сектор электроэнергетики, без учета гидроэнергетики). С другой - ископаемые источники энергии также субсидируются государствами, причем в значительно больших масштабах. В 2015 году объем таких субсидий оценивался IEA в $325 млрд, а в 2014 году - в $500 млрд. При этом эффективность субсидирования технологий ВИЭ постепенно повышается (субсидии в 2015 году выросли на 6%, а объемы новой установленной мощности - на 8%).

Также растет, причем стремительно, конкурентоспособность ВИЭ за счет снижения стоимости производства электроэнергии. Для сравнения себестоимости различных источников электроэнергии часто используется показатель LCOE (levelized cost of electricity - полная приведенная стоимость электроэнергии), при расчете которого учитываются все затраты как инвестиционного, так и операционного характера на полном жизненном цикле электростанции соответствующего типа. По данным компании Lazard, которая ежегодно выпускает оценки LCOE для разных видов топлива, для ветра этот показатель за последние 7 лет снизился на 66%, а для солнца - на 85%.

При этом нижние уровни диапазона оценки LCOE для ветровых и солнечных электростанций промышленного масштаба уже сопоставимы или даже ниже значений этого параметра для газа и угля. Несмотря на то, что методология LCOE не позволяет учесть все системные эффекты и потребности в дополнительных инвестициях (сети, базовые резервные мощности и другое), это означает, что проекты в ветро- и солнечной энергетике становятся конкурентоспособны по сравнению с традиционными видами топлива и без государственной поддержки.

Еще одной характеристикой этого тренда является темп снижения цен, заявляемых энергокомпаниями на аукционах по покупке крупных объемов электроэнергии посредством PPA (power purchase agreement - соглашение о поставках электроэнергии). Например, очередной рекорд для солнечной энергетики в размере 2,42 цента за кв/ч был поставлен консорциумом, состоящим из китайского производителя панелей JinkoSolar и японского девелопера Marubeni, в 2016 году в Объединенных Арабских Эмиратах. Не далее как в 2014 году самый низкий бид на подобных аукционах стоил выше 6 центов за кв/ч.

В заключение следует еще раз вспомнить о ключевых причинах бурного развития ВИЭ в мире. Основной фактор, стимулирующий развитие возобновляемых - это все-таки декарбонизация, то есть принятие мер по сокращению выбросов парниковых газов для борьбы с глобальным потеплением. На это было нацелено принятое 12 декабря 2015 года и вступившее в силу 4 ноября 2016 года Парижское соглашение об изменении климата.

Среди других выгод перехода на ВИЭ можно отметить улучшение экологической обстановки, снабжение энергодефицитных и удаленных районов, а также развитие технологий и появление новых рабочих мест. За последние несколько лет использование ВИЭ стимулировало создание одной из самых высокотехнологичных отраслей промышленности в мире. Объем инвестиций в эту отрасль в 2015 году оценивался в $288 млрд США. 70% всех инвестиций в генерацию электроэнергии было сделано в секторе возобновляемых источников энергии. В данном секторе (не считая гидроэнергетику) в мире занято более 8 млн человек (например, в Китае их число составляет 3,5 млн).

Сегодня развитие возобновляемых источников энергии нужно рассматривать не в изоляции, а как часть более широкого процесса Energy Transition - «энергетического перехода», долгосрочного изменения структуры энергетических систем. Этот процесс характеризуется и другими важными изменениями, многие из которых усиливают «зеленую» энергетику, повышая ее шансы на успех. Одним из таких изменений является развитие технологий хранения энергии. Для зависящих от погодных условий и времени суток ВИЭ появление подобных коммерчески привлекательных технологий, очевидно, станет большим подспорьем. Мировой процесс развития новой энергетики является необратимым, но четкий ответ на вопрос о его месте и роли в российском ТЭК еще предстоит сформулировать. Главное сейчас: не упустить окно возможностей - ставки в этой гонке довольно высоки.

ВОЗОБНОВЛЯЕМЫЕ ИСТОЧНИКИ ЭНЕРГИИ, потоки энергии, постоянно существующие или периодически возникающие в окружающей среде. К основным возобновляемым источникам энергии относятся: солнечное излучение, гидроэнергия, энергия ветра, биомассы, морских и океанических течений, энергия приливов и отливов, тепловая энергия недр Земли (геотермальная энергия). Потенциальные запасы возобновляемых источников энергии намного превышают все перспективные потребности человечества в энергии, а также потенциал невозобновляемых источников энергии (органических и ядерное топливо). Использование возобновляемых источников энергии (нетрадиционная энергетика) позволит решить проблемы сокращения запасов невозобновляемых топливно-энергетических ресурсов, обеспечения энергоресурсами децентрализованных потребителей и регионов с дальним завозом топлива, снижения расходов на его доставку. Технический потенциал возобновляемых источников энергии России составляет примерно 4,6 миллиарда тонн условного топлива (т.у.т.) в год (в Российской Федерации принят топливный тонно-эквивалент по углю, равный 29,3·10 9 Дж; в Европе и США принят топливный тонно-эквивалент по нефти, равный 41,8·10 9 Дж), что превышает современный уровень энергопотребления России, составляющий около 1,2 миллиарда т.у.т. в год.

Солнечное излучение (самый мощный источник энергии на Земле) существенно меняется в зависимости от времени суток, состояния атмосферы, времени года. Годовой поток солнечной радиации на Земле находится в пределах 3000-8000 МДж/м 2 в год (800-2200 кВт·ч/м 2). Ежегодное количество солнечной энергии у поверхности Земли в 25 раз превышает энергию всех мировых разведанных запасов угля и в 3-5 тысяч раз больше ежегодно расходуемой человечеством энергии. В России экономический потенциал использования солнечной энергии эквивалентен 2300 миллионам т.у.т., освоено 12,5 миллионов т.у.т.

Солнечную энергию можно использовать для производства электроэнергии непосредственным преобразованием в электрическую энергию при помощи солнечных батарей (смотри также Гелиотехника, Гелиоэлектрическая станция).

Гидроэнергетические источники оценивают количеством энергии, которая может быть получена, если перегородить все крупные реки планеты, что соответствует 9802 миллиардам кВт·ч, в том числе 852 миллиарда кВт·ч (около 8,7% мировых запасов) составляет экономический потенциал гидроэнергетических ресурсов России. Наибольшими гидроэнергетическими запасами обладают Китай, Россия, США и Бразилия. В России основные гидроэнергетические ресурсы (около 80%) расположены в малообжитых районах Сибири и Дальнего Востока (освоено около 10%). Поэтому создание в этих районах крупных ГЭС представляется неоправданным как с экономической, так и с экологической точек зрения (приведёт к затоплению обширных пространств тайги). Производство современных гидроагрегатов мощностью 10-5860 кВт позволяет возобновить в России строительство малых ГЭС. Экономический потенциал использования малой гидроэнергетики эквивалентен 125 миллионам т.у.т., освоено 65 миллионов т.у.т. (на 2003 действуют около 50 микро-ГЭС мощностью от 1,5 до 50 кВт) (смотри Гидроэнергетика).

Использование энергии ветра в различных районах Земли неодинаково. В России экономический потенциал энергии ветра эквивалентен 2000 миллионов т.у.т., освоено 10 миллионов т.у.т. (смотри Ветроэлектрическая станция, Ветроэнергетика).

Биомасса, получаемая из продуктов сельского хозяйства, лесоводства, аквакультуры, промышленных и бытовых органических отходов, служит для производства энергии и биотоплива (энергетическая ферма). Основной целью переработки сырья могло бы быть исключительно производство энергии, но более выгодно использовать биомассу для получения и биотоплива (например, метилового спирта). В России экономический потенциал энергии биомассы эквивалентен 53 миллионам т.у.т., освоено 35 миллионов т.у.т. (2005). Имеются технические разработки по использованию биогаза в качестве автомобильного топлива (смотри Биогаз, Биомасса).

Океанические источники включают энергию течений на всей акватории Мирового океана, приливов, волн, смешивания пресные и солёные морские воды, разности (градиентов) температур, существующей между поверхностными и глубинными слоями воды в тропических районах океанов. Для технической реализации целесообразно освоение только наиболее крупных течений, приливов с большой амплитудой, участков океана со значительной разницей солёности между речным стоком и морской водой и с температурным перепадом в 20°С, при котором может быть эффективно осуществлён Карно цикл. На преобразовании энергии приливов основано действие приливных электростанций (ПЭС). Наиболее известны: ПЭС мощностью 240 МВт, расположенная в Бретани (Франция), и небольшая опытная станция мощностью 400 кВт в Кислой губе на побережье Баренцева море (Россия). К перспективным проектам развития приливной энергетики в России относятся Мезенская ПЭС на Белом море (19 200 МВт), Тугурская ПЭС на Охотском море (7980 МВт). В Мировом океане разность температур между тёплыми поверхностными водами и более холодными (придонными) достигает 20°С. Это обеспечивает непрерывно пополняемый запас тепловой энергии, которая может быть преобразована в другие виды (механическую, электрическую).

Геотермальные источники аккумулируют неисчерпаемое количество энергии в недрах земли. Ресурсы, пригодные для промышленного использования, разделяют на гидрогеотермальные и петрогеотермальные (смотри в статье Геотермальные ресурсы). Гидрогеотермальные источники (в том числе системы с горячей водой) распространены гораздо шире, чем системы, вырабатывающие перегретый пар (около 240°С) под давлением до 3,5 МПа, с небольшим содержанием других газов, отсутствием (или малым содержанием) воды (известные также как системы сухого пара). Пар, обычно высокого качества (содержит незначительное количество твёрдых частиц), можно направлять сразу же после извлечения из недр в обычную паровую турбину для производства электроэнергии. Первая в России Паужетская ГеоТЭС мощностью 5 МВт, доведённая впоследствии до мощности 11 МВт, создана в 1967 году на южной оконечности полуострова Камчатка. На Верхнемутновской ГеоТЭС мощностью 12 МВт и Мутновской ГеоТЭС мощностью 80 МВт (Камчатка) в качестве теплоносителя используется пар местного месторождения (давление 0,8 МПа). В 1989 году на Северном Кавказе создана опытная Ставропольская ГеоТЭС, где в качестве теплоносителя применяется термальная вода с температурой 165°С, добываемая с глубины 4,2 км. Функционирует океанская ГеоТЭС на острове Итуруп (Сахалинская область) суммарной мощностью 30 МВт. Находится в эксплуатации Курильская ГеоТЭС мощностью 0,5 МВт. Месторождения парогидротермальных источников имеются в России только на Камчатке и Курилах, поэтому геотермальная энергетика не может играть значительную роль в масштабах страны, однако для указанных районов, энергоснабжение которых целиком зависит от привозного топлива, геотермальная энергетика способна радикально решить проблему энергообеспечения (смотри также Геотермальная электростанция).

Экологический аспект. Существует мнение, что выработка электроэнергии за счёт возобновляемых источников представляет собой абсолютно экологически «чистый» вариант. Это не совсем верно, так как эти источники энергии обладают принципиально иным спектром воздействия на окружающую среду по сравнению с традиционными энергоустановками на органическом топливе. Использование возобновляемых источников энергии может привести к изменению теплового баланса, затемнению больших территорий солнечными концентраторами (солнечная энергия); шумовым воздействиям, локальным климатическим изменениям, опасности для мигрирующих птиц и насекомых (ветроэнергетика); выбросу твёрдых частиц, канцерогенных и токсичных веществ, диоксида углерода, биогаза (биоэнергетика); появлению биологических аномалий под воздействием гидродинамических и тепловых возмущений, периодическому затоплению прибрежных территорий, эрозии побережья, смене движения прибрежных песков (гидротермальная энергетика, энергия приливов, волн); изменению уровня грунтовых вод, оседанию почвы, заболачиванию (геотермальная энергетика) и др.

Лит.: Бойлс Д. Биоэнергия: технология, термодинамика, издержки. М., 1987; Васильев Л. Л., Гракович Л. П., Хрусталев Д. К. Тепловые трубы в системах с возобновляемыми источниками энергии. Минск, 1988; Андреев В. М., Грилихес В. А., Румянцев В. Д. Фотоэлектрическое преобразование концентрированного солнечного излучения. Л., 1989; Сичкарев В. И., Акуличев В. А. Волновые энергетические станции в океане. М., 1989; Лабунцов Д. А. Физические основы энергетики. М., 2000.

Гидроэлектроэнергия является очередным крупнейшим источником возобновляемой энергии, обеспечивая 3,3 % мирового потребления энергии и 15,3 % мировой генерации электроэнергии в 2010 году. В 2010 году 16,7% мирового потребления энергии поступало из возобновляемых источников. Доля возобновляемой энергии уменьшается, но это происходит за счёт сокращения доли традиционной биомассы, которая составила всего 8,5% в 2010 году. Доля современной возобновляемой энергии растёт и в 2010 году составила 8,2%, в том числе гидроэнергия 3,3%, для отопления и нагрева воды (биомасса, солнечный и геотермальный нагрев воды и отопление) 3,3%; биогорючее 0,7%; производство электроэнергии (ветровые, солнечные, геотермальные электростанции и биомасса в ТЕС) 0,9%. Использование энергии ветра растет примерно на 30 процентов в год, по всему миру с установленной мощностью 196600 мегаватт (МВт) в 2010 году, и широко используется в странах Европы и США. Ежегодное производство в фотоэлектрической промышленности достигло 6900 МВт в 2008 году . Солнечные электростанции популярны в Германии и Испании. Солнечные тепловые станции действуют в США и Испании, а крупнейшей из них является станция в пустыне Мохаве мощностью 354 МВт. Крупнейшей в мире геотермальной установкой, является установка на гейзерах в Калифорнии, с номинальной мощностью 750 МВт. Бразилия проводит одну из крупнейших программ использования возобновляемых источников энергии в мире, связанную с производством топливного этанола из сахарного тростника. Этиловый спирт в настоящее время покрывает 18 процентов потребности страны в автомобильном топливе . Топливный этанол также широко распространен в США.

Примеры возобновляемой энергии

Энергия ветра

Это отрасль энергетики, специализирующаяся на преобразовании кинетической энергии воздушных масс в атмосфере в электрическую,тепловую и любую другую форму энергии для использования в народном хозяйстве. Преобразование происходит с помощью ветрогенератора (для получения электричества),ветряных мельниц (для получения механической энергии) и многих других видов агрегатов. Энергия ветра является следствием деятельности солнца, поэтому она относится к возобновляемым видам энергии.

В перспективе планируется использование энергии ветра не посредством ветрогенераторов , а более нетрадиционным образом. В городе Масдар (ОАЭ) планируется строительство электростанции работающей на пьезоэффекте . Она будет представлять собой лес из полимерных стволов покрытых пьезоэлектрическими пластинами . Эти 55-метровые стволы будут изгибаться под действием ветра и генерировать ток .

Гидроэнергия

Преимуществами ПЭС является экологичность и низкая себестоимость производства энергии. Недостатками - высокая стоимость строительства и изменяющаяся в течение суток мощность, из-за чего ПЭС может работать только в единой энергосистеме с другими типами электростанций.

Энергия волн

Энергия солнечного света

Данный вид энергетики основывается на преобразовании электромагнитного солнечного излучения в электрическую или тепловую энергию.

К СЭС косвенного действия относятся:

  • Башенные - концентрирующие солнечный свет гелиостатами на центральной башне наполненной солевым раствором.
  • Модульные - на этих СЭС теплоноситель, как правило масло , подводится к приемнику в фокусе каждого параболо -цилиндрического зеркального концентратора и затем передает тепло воде испаряя её.

Схема солнечного пруда:
1 - слой пресной воды; 2 - градиентный слой;
3 - слой крутого рассола; 4 - теплообменник.

Крупнейшая электростанция подобного типа находится в Израиле , её мощность 5 Мвт, площадь пруда 250 000 м 2 , глубина 3 м.

Геотермальная энергия

Электростанции данного типа представляют собой теплоэлектростанции использующие в качестве теплоносителя воду из горячих . В связи с отсутствием необходимости нагрева воды ГеоТЭС являются в значительной степени более экологически чистыми нежели ТЭС. Строятся ГеоТЭС в вулканических районах, где на относительно небольших глубинах вода перегревается выше температуры кипения и просачивается к поверхности, иногда проявляясь в виде гейзеров . Доступ к подземным источникам осуществляется бурением скважин.

Биоэнергетика

Данная отрасль энергетики специализируется на производстве энергии из биотоплива . Применяется в производстве как электрической энергии , так и тепловой .

Биотопливо первого поколения

  • Водоросли - простые живые организмы, приспособленные к росту и размножению в загрязнённой или солёной воде (содержат до двухсот раз больше масла, чем источники первого поколения, таких как соевые бобы);
  • Рыжик (растение) - растущий в ротации с пшеницей и другими зерновыми культурами;
  • Jatropha curcas или Ятрофа - растущее в засушливых почвах, с содержанием масла от 27 до 40 % в зависимости от вида.

Из биотоплив второго поколения, продающихся на рынке, наиболее известны BioOil производства канадской компании Dynamotive и SunDiesel германской компании CHOREN Industries GmbH .

По оценкам Германского Энергетического Агентства (Deutsche Energie-Agentur GmbH) (при ныне существующих технологиях) производство топлив пиролизом биомассы может покрыть 20 % потребностей Германии в автомобильном топливе. К 2030 году , с развитием технологий, пиролиз биомассы может обеспечить 35 % германского потребления автомобильного топлива. Себестоимость производства составит менее €0,80 за литр топлива.

Создана «Пиролизная сеть» (Pyrolysis Network (PyNe) - исследовательская организация, объединяющая исследователей из 15 стран Европы , США и Канады .

Весьма перспективно также использование жидких продуктов пиролиза древесины хвойных пород. Например, смесь 70% живичного скипидара , 25% метанола и 5% ацетона , то есть фракций сухой перегонки смолистой древесины сосны , с успехом может применяться в качестве замены бензина марки А-80. Причём для перегонки применяются отходы дереводобычи: сучья , пень , кора . Выход топливных фракций достигает 100 килограммов с тонны отходов.

Биотопливо третьего поколения - топлива, полученные из водорослей.

Использованию постоянных процессов противопоставлена добыча ископаемых энергоносителей, таких как каменный уголь , нефть , природный газ или торф . В широком понимании они тоже являются возобновляемыми, но не по меркам человека, так как их образование требует сотен миллионов лет, а их использование проходит гораздо быстрее.

Меры поддержки возобновляемых источников энергии

На данный момент существует достаточно большое количество мер поддержки ВИЭ. Некоторые из них уже зарекомендовали себя как эффективные и понятные участникам рынка. Среди таких мер стоит более подробно рассмотреть:

  • Зеленые сертификаты;
  • Возмещение стоимости технологического присоединения;
  • Тарифы на подключение;
  • Система чистого измерения;

Зеленые сертификаты

Под зелеными сертификатами понимаются сертификаты, подтверждающие генерацию определенного объема электроэнергии на основе ВИЭ. Данные сертификаты получают только квалифицированные соответствующим органом производители. Как правило, зеленый сертификат подтверждает генерацию 1Мвт ч, хотя данная величина может быть и другой. Зеленый сертификат может быть продан либо вместе с произведенной электроэнергией, либо отдельно, обеспечивая дополнительную поддержку производителя электроэнергии. Для отслеживания выпуска и принадлежности «зеленых сертификатов» используются специальные программно-технические средства (WREGIS, M-RETS, NEPOOL GIS). В соответствии с некоторыми программами сертификаты можно накапливать (для последующего использования в будущем), либо занимать (для исполнения обязательств в текущем году). Движущей силой механизма обращения зеленых сертификатов является необходимость выполнения компаниями обязательств, взятых на себя самостоятельно или наложенных правительством. В зарубежной литературе «зеленые сертификаты» известны также как: Renewable Energy Certificates (RECs), Green tags, Renewable Energy Credits.

Возмещение стоимости технологического присоединения

Для повышения инвестиционной привлекательности проектов на основе ВИЭ государственными органами может предусматриваться механизм частичной или полной компенсации стоимости технологического присоединения генераторов на основе возобновляемых источников к сети. На сегодняшний день только в Китае сетевые организации полностью принимают на себя все затраты на технологическое присоединение.

Фиксированные тарифы на энергию ВИЭ

Накопленный в мире опыт позволяет говорить о фиксированных тарифах как о самых успешных мерах по стимулированию развития возобновляемых источников энергии. В основе данных мер поддержки ВИЭ лежат три основных фактора:

  • гарантия подключения к сети;
  • долгосрочный контракт на покупку всей произведенной ВИЭ электроэнергии;
  • гарантия покупки произведенной электроэнергии по фиксированной цене.

Фиксированные тарифы на энергию ВИЭ могут отличаться не только для разных источников возобновляемой энергии, но и в зависимости от установленной мощности ВИЭ. Одним из вариантов системы поддержки на основе фиксированных тарифов является использование фиксированной надбавки к рыночной цене энергии ВИЭ. Как правило, надбавка к цене произведенной электроэнергии или фиксированный тариф выплачиваются в течение достаточно продолжительного периода (10-20 лет), тем самым гарантируя возврат вложенных в проект инвестиций и получение прибыли.

Система чистого измерения

Данная мера поддержки предусматривает возможность измерения отданного в сеть электричества и дальнейшее использование этой величины во взаиморасчетах с электроснабжающей организацией. В соответствии с «системой чистого измерения» владелец ВИЭ получает розничный кредит на величину, равную или большую выработанной электроэнергии. В соответствии с законодательством, во многих странах электроснабжающие организации обязаны предоставлять потребителям возможность осуществления чистого измерения.

Инвестиции

Во всём мире в 2008 году инвестировали $51,8 млрд в ветроэнергетику, $33,5 млрд в солнечную энергетику и $16,9 млрд в биотопливо. Страны Европы в 2008 году инвестировали в альтернативную энергетику $50 млрд, страны Америки - $30 млрд, Китай - $15,6 млрд, Индия - $4,1 млрд .

В 2009 году инвестиции в возобновляемую энергетику во всём мире составляли $160 млрд, а в 2010 году - $211 млрд. В 2010 году в ветроэнергетику было инвестировано $94,7 млрд, в солнечную энергетику - $26,1 млрд и $11 млрд - в технологии производства энергии из биомассы и мусора .

См. также

Примечания

Ссылки

  • Вы и «зеленая» энергетика , раздел сайта Всемирного фонда дикой природы

Под пристальным вниманием ученых в последнее время возобновляемые источники энергии. Пришло то время, которое заставило задуматься о завтрашнем дне и ясно понять, что использование полезных ископаемых Земли не может быть бесконечным.

Возобновляемые источники энергии (ВИЭ)

Реакция термоядерного синтеза Солнца является основным процессом возникновения альтернативной энергии. Согласно расчету астрономов, предполагаемая жизнь этой планеты составляет пять миллиардов лет, что позволяет судить о практически бесконечных запасах солнечного излучения. Возобновляемые источники энергии - это не только поступающие потоки Солнца, но и другие производные - альтернативные источники: движение ветра, волн и в природе. В течение длительного времени природа приспосабливалась к использованию солнечного излучения и таким образом достигла теплового равновесия. Эта полученная энергия не приводит к всеобщему потеплению, так как, запустив все необходимые процессы на Земле, она обратно возвращается в космос. Рациональное использование возобновляемых источников энергии является первостепенной задачей

ученых, ведущих научные разработки в этой области. Ведь из всего полученного солнечного излучения только третья часть используется на поддержание жизненных процессов на Земле, 0,02% расходуется растениями для необходимого им фотосинтеза, а оставшаяся невостребованная часть возвращается обратно в космическое пространство.

Виды и применение

Возобновляемые источники энергии состоят из нескольких основных компонентов:


Национальная лаборатория Дании подготовила отчет, где было сказано, что уже к 2050 году мир сможет перейти на получение энергии с очень низким уровнем выброса углерода. При этом себестоимость ее будет гораздо меньше, чем стоимость добычи природных ресурсов из недр Земли.