На чем базируется энергетика возобновляемых источников. Фиксированные тарифы на энергию ВИЭ. Показатели использования ВИЭ в России

Иранский разработчик энергетических проектов Amin подписал соглашение с норвежской компанией, специализирующейся на производстве солнечных модулей. Партнёры планируют возвести в Иране солнечную электростанцию мощностью 2 ГВт. Контракт оценивается в $2,9 млрд.

Ранее глава компании Tesla Илон Маск заявил, что именно активное развитие возобновляемых источников энергии может стать гарантией развития цивилизации, в противном случае человечество рискует вернуться в «тёмные века».

При этом Маск входит в совет директоров компании SolarCity, специализирующейся на выпуске солнечных панелей. Компания занимает около 40% американского рынка установок солнечной генерации электроэнергии.

Маск известен как наиболее активный лоббист использования альтернативных источников энергии. Например, возглавляемая им Tesla заключила в 2017 году контракт на возведение в Австралии 100-мегаваттной аккумуляторной системы.

  • Илон Маск
  • Reuters

Мировой опыт

Внедрение возобновляемых источников энергии (ВИЭ) набирает популярность во всём мире. Австралия — один из мировых лидеров по установке фотоэлектрических электростанций, доля которых в австралийской электроэнергетике превышает 3%. Ежегодно страна наращивает суммарную мощность солнечной генерации примерно на 1 ГВт.

По этому показателю Австралию обгоняет Великобритания, где общий показатель солнечных электростанций достигает 12 ГВт, что вдвое выше, чем в Австралии.

Бесспорным лидером в сфере ВИЭ является Китай, который совместно с Тайванем производит почти 60% всех солнечных панелей в мире.

Согласно подсчётам Международного энергетического агентства (IEA), мощность генерирующих установок, возведённых в КНР только в 2016 году, составила 34 ГВт. Впрочем, это лишь 1% потребляемой в Китае электроэнергии, большая часть которой генерируется из угля, — именно угольным ТЭС страна во многом обязана непростой ситуацией в экологии.

США также шли по пути перевода энергетики на возобновляемые источники. Но администрация Дональда Трампа отменила принятый Бараком Обамой план «Чистая энергия».

  • Панели солнечных батарей, созданные Tesla, детская больница Сан-Хуана, Пуэрто-Рико
  • Reuters

В 2014 году в рамках Климатической недели в Нью-Йорке была основана RE100 — структура, объединяющая компании, переходящие на использование возобновляемых источников энергии. К RE100 присоединились IKEA, Apple, BMW, Google, Carlsberg Group и т.п. Список членов RE100 постоянно пополняется. Например, в конце октября к организации присоединился один из крупнейших в мире производителей ветрогенераторов — датская компания Vestas Wind Systems.

В целом, по данным IEA, доля ВИЭ в мировом производстве электроэнергии в 2015 году составляла около 24%.

Экология под вопросом

Однако, по мнению экспертов, не все ВИЭ одинаково экологически безопасны. Некоторые способны нанести ущерб экологии. В частности, речь идёт о гидроэлектростанциях (ГЭС). Согласно данным исследователей из Австралии и КНР, суммарная площадь земель, затопленных в результате ввода в эксплуатацию гидроэлектростанций, — 340 тыс. кв. км, что немногим меньше площади Германии. Соответствующие сведения учёные приводят в издании Trends in Ecology & Evolution.

Из-за ГЭС были разрушены многие пойменные экосистемы, что привело к снижению видового разнообразия. Впрочем, в последние годы гидроэнергетика уступает лидерство новым видам генерации: солнечной и ветроэнергетике. По прогнозам экспертов, их доля генерации сравняется с долей ГЭС к 2030 году.

Ещё одна популярная у экологического сообщества тема — использование биотоплива. Например, с точки зрения Международного энергетического агентства, биоэнергетика потенциально способна занять около 20% рынка первичной энергии к середине XXI века.

Однако активное внедрение биотоплива, произведённого из древесины и сельскохозяйственных культур, способно обернуться неприятными последствиями. Кратное увеличение нагрузки на сельхозугодия может привести к сокращению производства продовольствия. Согласно подсчётам американских исследователей, уже сегодня расширение «топливных» посадок вызвало рост цен на продовольственное сырьё в США. Кроме того, чрезмерное увлечение биотопливом может привести к вырубке лесов.

В 2012 году Еврокомиссия пришла к выводу, что перевод земель под топливные плантации должен быть ограничен, а производители топлива из пищевых культур не должны пользоваться господдержкой.

В результате проведённого в прошлом году Евросоюзом исследования учёные выяснили, что пальмовое или соевое масло, из которого извлекают энергию, выделяет в атмосферу больше углекислого газа, чем любое ископаемое топливо.

«Предписанное ЕС дешёвое биотопливо на основе пищевых продуктов, в особенности растительных масел, таких как рапсовое, подсолнечное и пальмовое, — просто ужасная идея», — заявил директор исследовательской организации Transport & Environment Йос Дингс.

Неоднозначными, по мнению экспертов, являются и преимущества электромобилей как с экономической, так и с экологической точек зрения. При этом в ряде стран действуют меры правительственной поддержки этого вида транспорта.

  • Электромобиль Tesla Model 3
  • Reuters

Например, в Эстонии покупатель электрокара может рассчитывать на компенсацию 50% себестоимости машины, в Португалии на покупку электроавтомобиля выплачивается субсидия в 5000 евро. В России тоже задумываются о введении подобных дотаций.

Без господдержки такие автомобили не пользуются спросом: после того как власти Гонконга отменили налоговые льготы для покупателей электрокаров Tesla, продажи этих машин упали до нуля. Однако польза электрокаров для окружающей среды пока не очевидна.

«Электромобили действительно весьма экологичный вид транспорта, но ведь для того, чтобы подключиться к электрической сети и запитать батарею, аккумулятор, нужно выработать эту электроэнергию, а для этого требуется первичный источник. Сегодня в мире таким первичным источником номер один является даже не нефть, а уголь», — отметил президент России Владимир Путин, выступая в начале октября на Международном форуме по энергоэффективности и развитию энергетики «Российская энергетическая неделя».

Эхо «Фукусимы»

Особую популярность тема возобновляемых источников энергии приобрела после 2011 года. После аварии на АЭС «Фукусима-1» всё громче звучат требования отказаться от использования атомной энергетики.

  • Реактор №3 АЭС «Фукусима-1»
  • Self Defence Force Nuclear Biological Chemical Weapon Defense Unit / Reuters

На сегодняшний день страной, полностью остановившей АЭС, стала Италия, в будущем примеру Рима планируют последовать Бельгия, Испания и Швейцария. В Германии последнюю АЭС планируют отключить к 2022 году. Всего в ФРГ работало 17 атомных электростанций, которые производили около четверти всей потребляемой в стране электроэнергии.

По мнению многих экспертов, панические настроения вокруг атомной энергетики сильно преувеличены.

«Если вычесть риск аварии, то атомная энергетика не несёт особых рисков для экологии», — отметил в интервью RT заместитель генерального директора Института национальной энергетики Александр Фролов.

Изначально руководство ЕС планировало компенсировать сворачивание атомной энергетики за счёт газовой генерации.

«Нам необходимо больше газа. После решения Берлина именно газ станет драйвером роста», — заявил еврокомиссар по энергетике Гюнтер Эттингер в 2011 году.

В среднем при сжигании природного газа в атмосферу выбрасывается в два раза меньше углекислого газа, чем при сжигании других видов ископаемых углеводородов.

Привилегированное положение

Однако росту газовой генерации помешали высокие темпы ввода мощностей альтернативной энергетики. В странах, наиболее активно развивающих ВИЭ, к 2014 году упала загрузка газовых ТЭС. По оценкам консалтинговой компании Capgemini, около 110 ГВт газовых мощностей не оправдали вложенные инвестиции и оказались на грани банкротства. В тяжёлом положении оказалось примерно 60% европейских ТЭС, работающих на природном газе.

По мнению ряда экспертов, причиной кризиса традиционной энергетики стала не высокая конкурентоспособность ВИЭ, а привилегии, которыми пользуются производители электроэнергии на возобновляемых источниках. «Зелёная» электроэнергия закупается властями по завышенным тарифам в приоритетном порядке.

Как считает Фролов, эта политика приводит к разбалансировке энергетической сферы.

«Резкий рост ввода возобновляемой энергетики сделал газовые ТЭС нерентабельными — они стали закрываться, — отметил эксперт. — Между тем ветряная и солнечная генерации имеют серьёзный недостаток: зависимость от погодных условий. Например, в начале этого года в Германии примерно на девять дней установилась пасмурная и безветренная погода. Объём генерации возобновляемой энергии упал на 90%. Для местных потребителей это стало шоком. Существующая база, на которой работают солнечные и ветряные станции, не обеспечивает гарантий бесперебойного снабжения электроэнергией. Зависимость от сил природы — это и есть настоящий возврат в тёмные века».

  • Угольная электростанция Lippendorf, Саксония, Германия
  • globallookpress.com
  • Michael Nitzschke/imagebroker

На фоне закрытия газовых ТЭС в Европе растёт наиболее грязная генерация электроэнергии — угольная, считает Фролов.

Например, в Германии запланировано строительство двух десятков угольных ТЭС. В стране сложилась парадоксальная ситуация: вместе с ростом экологически чистого производства энергии увеличивается и наиболее опасный для окружающей среды сектор энергетики, отметил эксперт.

«Технологии становятся всё дешевле и доступнее»

В последние два года баланс на европейском энергетическом рынке начал выправляться: в Германии было запущено несколько газовых ТЭС, потребление газа в Евросоюзе начало расти. По итогам 2016 года использование природного газа в Евросоюзе возросло на 6% по сравнению с 2015 годом.

По мнению научного сотрудника Центра экономического моделирования энергетики и экологии РАНХиГС Татьяны Ланьшиной, развитие альтернативной энергетики не несёт никаких рисков.

«Хотя быстрый переход на возобновляемые источники энергии невозможен, те страны, которые давно над этим работают, добились больших успехов. Например, в Дании за счёт ВИЭ вырабатывается порядка половины всей электроэнергии, в Германии — примерно треть, — отметила эксперт в интервью RT. — Эти страны работали над этим десятилетиями, и другие страны тоже могут постепенно переходить на ВИЭ. Эти технологии становятся всё дешевле и доступнее. Что касается субсидий, то вся энергетика пользуется государственной поддержкой, и традиционная в том числе».

Лекиця 4

Альтернативная энергетика.

Проф.И.Хузмиев

Общие положения.

Возобновляемые источники энергии (ВИЭ)- это солнечное излучение, энергия ветра, энергия малых рек и водотоков, приливов, волн, энергия биомассы (дрова, бытовые и сельскохозяйственные отходы, отходы животноводства, птицеводства, лесной, деревообрабатывающей и целлюлозно-бумажной промышленности, лесозаготовок), геотермальная энергия, малых рек и водотоков, приливов, волн, геотермальная энергия, а также рассеянная тепловая энергия (тепло воздуха, воды океанов, морей и водоёмов) (Рис.2.1.)

Рис.2.1. Мощность возобновляемых источников энергии, поступающих на землю и направления их использования.(степень, означает 11 )

: http://user.ospu.odessa.ua/~shev/emd_m/nie/doklad.htm

Массовое использование возобновляемых и нетрадиционных источников энергии (Таблица 2.1.) являетсяодним из способов решения энергетической, экологической и продовольственной проблем, которые сегодня стоят перед всем мировым сообществом (таблица 2.2.).Их использование необходимо рассматривать с позиций системного подхода, одно из важнейших требований которого заключается в рассмотрении технических систем во времени (жизненный цикл) и в пространстве (внешняя среда).

Способы использования возобновляемых источников энергии

Таблица 2.1.

Роль ВИЭ в решении трёх глобальных проблем Таблица 2.2.
Вид ресурсов или установок Энергетика Экология Продовольствие
Ветроустановки + + +
Малые и микроГЭС + + +
Солнечные тепловые установки + + +
Солнечные фотоэлектрические установки + + +
Геотермальные электрические станции + +/-
Геотермальные тепловые установки + +/- +
Биомасса. Сжигание твёрдых бытовых отходов + +/-
Биомасса. Сжигание сельскохозяйственных отходов, отходов лесозаготовок и лесопереработок + +/- +
Биомасса. Биоэнергетическая переработка отходов + + +
Биомасса. Газификация + +
Установки по утилизации низкопотенциального тепла + +
Биомасса. Получение жидкого топлива + + +

Положительное влияние;



Отрицательное влияние;

0 отсутствие влияния.

Под жизненным циклом обычно понимается структура процесса разработки, производства, эксплуатации. Он включает следующие стадии:

Формирование требований к системе;

Проектирование;

Изготовление, испытание и доводку опытного образца;

Серийное производство;

Эксплуатация;

Модернизация;

Первые три стадии называют внешним проектированием или макропроектированием. Здесь определяются: цели системы, определяются граничные условия, исследуются свойства внешней среды, механизмы и параметры системы, ее количественные характеристики и связи и как результат формулируется техническое задание на разработку проекта. Например, рассмотрим проблему энергоснабжения удаленных и мобильных потребителей, которым необходимо энергоснабжение, но в силу различных причин (удаленность, трудности рельефа и т.д.) оно затруднено или невозможно. Проблемы энергоснабжения таких потребителей решаются несколькими путями с помощью:

Различных видов классического топлива;

Энергии, запасенной в химических процессах;

Возобновляемых, нетрадиционных источников энергии и их комбинацией;

Использование нетрадиционных решений для обеспечения энергией отдельных потребителей позволит повысить социально-культурный уровень жизни работников, снизить издержки производства, повысить надежность и качество энергоснабжения на базе местных ресурсов, снизить антропогенное воздействие на окружающую среду. Поэтому для указанных выше потребителей необходимо активизировать строительство малых и микро ГЭС, использование энергии ветра, солнца, геотермальных и биоэнергетических источников. Все они обладают своими преимуществами и недостатками (Таблица 2.3.).

Сравнение ВИЭ с централизованными источниками

Таблица 2.3..

Источник Стоимость Единицы Стоимость ед. уст. мощности Уд. показ., масса на Надежность электро- снабжения Квалифик. обслуж. Эколог.
энергии произв. Энергии Ед. уст. Мощности персонала опасность
1. Невозобновляемые Высокая Средняя Высокая Высокая Высокая Высокая
2. Химические Высокая Высокая Высокая Высокая Высокая Высокая
3. Возобновля-емые Низкая Высокая Средняя Средняя Низкая Низкая
4. Малая гидроэнерг. Низкая Средняя Средняя Высокая Низкая Низкая

Особый интерес возобновляемые источники энергии представляют для потребителей, расположенных в отдаленных местах, где население в основном занимается сельскохозяйственным производством (Таблица 2.4.). Классические системы энергоснабжения нуждаются в постоянной доставке к местам потребления дорогого жидкого топлива стоимостью с учетом доставки около 2$ за 1 литр, строительства линии электропередачи стоимостью более 20 тыс.$ за 1км и возведение электростанций при цене ориентировочно 1000$ за 1 кВт установленной мощности. Нетрадиционные решения же, основанные на первичных источниках энергии, имеющихся на месте потребления, хорошо вписываются в программы сбалансированного развития отдаленных регионов.

Потребители энергии в домашнем хозяйстве

Таблица 2.4..

Бытовые потребители. Технологические потребители.
Приготовление пищи, Микроклимат в технологических помещениях
Отопление и кондиционирование Орошение и водоснабжение
Водоснабжение и водоотведение Кормоприготовление
Освещение, Уход за животными, лечение
Нагрев воды для бытовых целей, Вакцинация
Радио, телевидение, связь, Получение продукции в животноводстве и аквакультуре
Энергоснабжение бытовых процессов Уборка и утилизация отходов
(уборка, мойка посуды, стирка, шитье Технологии в растениеводстве
И т.д.), Транспортные операции
Санитарно-гигиенические Сушка, первичная обработка и хранение продукции
Мероприятия, Технологии строительства

Основной целью развития нетрадиционной энергетики должно быть рациональное использование природных ресурсов, в том числе и энергетических, с сохранением экологического равновесия и социальной стабильности. При этом должны решаться следующие задачи:

Повышение уровня жизни населения с помощью автономных систем энергоснабжения на базе возобновляемых источников энергии,

Снижение потребности в дровах, замедление процесса сведения растительного покрова, повышение эффективности землепользования,

Сокращения импорта нефтепродуктов и развитие собственной энергетической базы,

Стабилизация цен на энергоносители и обеспечение бесперебойного энергоснабжения,

Подготовка квалифицированного персонала в области производства и потребления энергоресурсов и их эффективного использования.

Возобновляемые источники энергии - практически неисчерпаемы и всегда доступны благодаря быстрому распространению современных технологий. Их использование соответствует стратегии использования различных энергетических источников. Возобновляемые ресурсы являются общепризнанным способом защиты экономики от ценовых колебаний и будущих расходов по защите окружающей среды. Технологии, основанные на использовании возобновляемых источников энергии, являются экологически чистыми из-за отсутствия выбросов загрязняющих веществ в атмосферу. Их применение не вызывает образование парникового эффекта и, соответственно, связанных с ним климатических изменений, и не приводит к образованию радиоактивных отходов.

Использование ВИЭ позволяет:

  • Повысить энергетическую безопасность стран, зависящих от поставок углеводородного сырья. Использования ВИЭ является альтернативой энергоснабжению в условиях роста цен на нефть и природный газ.
  • Улучшить снизить эмиссию парниковых газов, в соответствии с Киотским протоколом и улучшить экологическое состояние окружающей среды.
  • Создать новые образцы высокоэффективного конкурентного в море энергетического оборудования
  • Сохранить запасы имеющегося энергетического сырья
  • Увеличить ресурсы углеводородов для технологического применения

Применение ВИЭ тормозится по следующим причинам:

· Отсутствие необходимых Законов и нормативных актов по развитию и поощрению потребителей и бизнесменов по применению ВИЭ. Отсутствие государственных органов управления по управлению процессами внедрения ВИЭ.

· Низкий платежеспособный спрос населения и организаций. Многие субъекты РФ - дотационные, нет экономических стимулов для вложения инвестиций (налоговые льготы, льготные кредиты), отсутствие утвержденной федеральной целевой программы, Отсутствие механизмов финансирования и возврата вложенных средств, недостаточный уровень экономических знаний организаций, принимающих решения.

· Отсутствие по некоторым видам ВИЭ готовых систем энергоснабжения, низкий уровень стандартизации и сертификации оборудования, неразвитость инфраструктуры, отсутствие обслуживающего персонала, недостаточный объём научно-технических и технологических разработок, недостаточный уровень технических знаний организаций, принимающих решения.

· В связи с тем, что Россия богата энергоресурсами, потребители относятся к ним как к нечто бесконечному и общедоступному. Этому также способствует их относительная дешевизна по сравнению с мировыми ценами.

· Неосведомленность населения, руководителей и общественности о возможностях ВИЭ. Отсутствие пропаганды в средствах массовой информации о свойствах ВИЭ и примеров их использования..

Наше будущее в значительной степени зависит от применения технологических инноваций. Возобновляемые источники энергии смогут в течение будущих десятилетий влиять на изменение общества в целом. Согласно прогнозам значение и доля возобновляемых источников энергии в общем процессе получения энергии будет возрастать. Эти технологии не только сокращают глобальную эмиссию СО 2 , но и придают необходимую гибкость процессу энергопроизводства, делая его менее зависимым от ограниченных запасов ископаемого топлива. По единому мнению экспертов в течение некоторого периода времени гидроэнергетика и биомасса будут доминировать над другими видами возобновляемых источников энергии. Однако, в ХХI веке первенство на энергорынке будет принадлежать ветроэнергетике и солнечной энергетике, которые сейчас активно развиваются. На современном этапе ветроэнергетика является самой быстрорастущей отраслью производства электроэнергии. В некоторых регионах уже сегодня ветроэнергетика конкурирует с традиционной энергетикой, основанной на использовании ископаемых видов топлива. В конце 2002 года установленная мощность ветростанций во всем мире превысила 30000 МВт. В то же время очевиден явный рост интереса во всем мире к солнечным электростанциям, хотя ее сегодняшняя себестоимость в два –три раза выше себестоимости традиционной энергетики. Фотоэлектричество особенно привлекательно для удаленных областей, не имеющих подключения к общей энергосистеме. Передовая тонкоплёночная технология, применяемая для производства фотоэлектрических батарей активно внедряется в крупномасштабное коммерческое производство.

Такие большие энергокомпании, как Энрон, Шелл и Бритиш Петролеум за последнее время много инвестировали в развитие фото и ветроэнергетики. Это является одним из самых убедительных фактов перспективного будущего возобновляемой энергетики. Большие инвестиции со стороны ведущих мировых энергокомпаний планируются также и в развитие других видов ВИЭ. Одним из наиболее перспективных рынков применения ВИЭ в ближайшие 20 лет во всем мире станут развивающиеся страны, испытывающие сегодня проблемы с нехваткой энергии. Для многих стран привлекательным является мобильный характер этих технологий. Установки, работающие на ВИЭ, можно разместить близко к пользователям. Кроме того, их монтаж быстрее и дешевле по сравнению со строительством больших тепловых электростанций, требующей протяженных линий электропередач. Возобновляемые источники энергии также пользуются спросом и в промышленно развитых странах. Опрос общественного мнения, проведенный в США, показывает, что большая часть энергопотребителей страны согласна платить больше за "зелёную" (экологически чистую) энергию, и многие энергетические компании могут им ее предложить. В Европе благодаря сильной общественной поддержке быстро растет рынок возобновляемых источников энергии.

Различные сценарии развития показывают, что доля использования возобновляемых источников энергии к 2010 году будет составлять от 9,9% до 12,5%. Поставленная цель, составляющая 12%, ("амбициозная, но реально выполнимая"), должна быть достигнута за счет установки 1 млн. "солнечных крыш", установленной мощности ветростанций, равной 15000 МВт и 1000 МВт установленной мощности в области биоэнергетики. Современная доля ВИЭ в энергопроизводстве, составляющая 6%, включает и большую гидроэнергетику, развитие которой в дальнейшем не планируется из-за негативного воздействия на окружающую среду. Увеличение доли ВИЭ должно быть обеспечено за счет развития энергетического использования биомассы, ветроэнергетики (установленная мощность ВЭС должна достигнуть 40 ГВт). Планируется установка 100 миллионов квадратных метров солнечных коллекторов. Ожидается увеличение установленной мощности ФЭБ до 3 ГВт э, геотермальных установок до 1 ГВт т, а тепловых насосов - до 2.5 ГВт т. Общая сумма капиталовложений достигнет 165 миллиардов евро (1997-2010 гг.), будет создано до 900000 новых рабочих мест, выбросы СО 2 уменьшатся на 402 млн.. тонн. Исходя из того, что ВИЭ сегодня обеспечивают менее 6% энергопотребления стран ЕС, необходимо объединить усилия для увеличения этой доли. Это, в свою очередь, создаст возможность для экспорта энергии и улучшения экологии. В настоящее время Европа импортирует более 50% энергоносителей, и если не принять срочных мер, то эта цифра может возрасти до 70% к 2020 году.

По оценкам Европейской Ассоциации Ветроэнергетики, установка ветростанций общей мощностью 40 ГВт, позволит создать дополнительно до 320 000 рабочих мест. По данным Ассоциации Фотоэлектрической Промышленности, установка 3 ГВт э создаст 100000 рабочих мест. Федерация Солнечной Энергетики считает возможным обеспечить 250000 рабочих мест, действуя только для нужд внутреннего рынка и еще 350000 рабочих мест могут быть созданы в случае работы на экспорт. White Paper предлагает ряд налоговых стимулов и других финансовых мер для поощрения инвестиций в область возобновляемых источников энергии, а также меры поощрения использования пассивной солнечной энергии. Согласно этому документу: "Поставленная цель удвоить текущую долю возобновляемых источников энергии до 12% к 2010 году - реально выполнима". Доля возобновляемых источников энергии в производстве электричества может вырасти от 14% до 23% и более к 2010 году, если принять соответствующие меры. Создание рабочих мест - один из наиболее важных аспектов, характеризующих развитие возобновляемой энергетики. Потенциал занятости населения в области возобновляемых источников энергии можно оценить по следующим данным:

Необходимо отметить, что при сравнении различных источников энергии цена является ключевым параметром. Возобновляемые источники энергии зачастую считаются более дорогостоящими по сравнению с ископаемым топливом. Такое заключение обычно основывается на неправильной оценке затрат. Когда мы оплачиваем счет за электроэнергию или заполняем бак своего автомобиля, мы обычно оплачиваем неполную цену за энергию. Цена не включает в себя всех затрат. Существует много скрытых затрат, связанных с использованием энергии. Скрытые социальные и экологические затраты, риск, связанный с использованием ископаемых видов топлива - основные барьеры к коммерциализации возобновляемых технологий. Общепризнано, что современные рынки игнорируют эти затраты. На самом деле, на мировом энергорынке предпочтение отдается загрязняющим источникам энергии, например, серосодержащим - углю и нефти, а не экологически чистым возобновляемым источникам. До тех пор, пока традиционные технологии способны перекладывать на общество существенную часть своих затрат, связанных с загрязнением окружающей среды и расходами на здравоохранение, возобновляемые источники, будут находиться в неравных условиях. И это несмотря на то, что ВИЭ практически не ухудшают состояние экологии и даже дают такие положительные эффекты, как создание рабочих мест, особенно в сельской местности. Поэтому для создания рынка, действующего по правилам "честной игры", необходим учет всех этих затрат.

Очень трудно оценить затраты, связанные с экологическим загрязнением, а некоторые из них даже трудно определить. Тем не менее, проведенные исследования доказывают их существенные размеры. Например, согласно исследованиям немецких ученых, затраты на производство электроэнергии ископаемых видов топлива, не включая затраты, связанные с решением проблемы глобального потепления, составляют 2,4-5,5 амер. цента/кВт*ч. В то же время стоимость электроэнергии, выработанной атомными электростанциями, - 6,1-3,1 амер. цента/кВт*ч. Согласно другому исследованию, выбросы SO 2 при сжигании угля на американских электростанциях ежегодно обходятся гражданам США в 82 миллиарда американских долларов - дополнительно для возмещения ущерба, нанесенного здоровью людей. Сокращение сельскохозяйственных урожаев, вызванное загрязнением воздуха, обходится американским фермерам в 7,5 млрд. американских долларов в год. Важным является тот факт, что граждане США фактически ежегодно оплачивают скрытые затраты, связанные с использованием энергии, в размере примерно 109-260 млрд. долларов. Подобные примеры могут быть приведены для других стран. Если бы дополнительные затраты включались в рыночные процессы, технологии по применению ВИЭ оказались бы в более выгодном положении, конкурируя с ископаемыми видами топлива. Тогда мы могли бы говорить о существенном проникновении ВИЭ на мировой энергетический рынок уже сегодня.

Источник : http://www.ecomuseum.kz/dieret/why/why.html

Гидроэлектроэнергия является очередным крупнейшим источником возобновляемой энергии, обеспечивая 3,3 % мирового потребления энергии и 15,3 % мировой генерации электроэнергии в 2010 году. В 2010 году 16,7% мирового потребления энергии поступало из возобновляемых источников. Доля возобновляемой энергии уменьшается, но это происходит за счёт сокращения доли традиционной биомассы, которая составила всего 8,5% в 2010 году. Доля современной возобновляемой энергии растёт и в 2010 году составила 8,2%, в том числе гидроэнергия 3,3%, для отопления и нагрева воды (биомасса, солнечный и геотермальный нагрев воды и отопление) 3,3%; биогорючее 0,7%; производство электроэнергии (ветровые, солнечные, геотермальные электростанции и биомасса в ТЕС) 0,9%. Использование энергии ветра растет примерно на 30 процентов в год, по всему миру с установленной мощностью 196600 мегаватт (МВт) в 2010 году, и широко используется в странах Европы и США. Ежегодное производство в фотоэлектрической промышленности достигло 6900 МВт в 2008 году . Солнечные электростанции популярны в Германии и Испании. Солнечные тепловые станции действуют в США и Испании, а крупнейшей из них является станция в пустыне Мохаве мощностью 354 МВт. Крупнейшей в мире геотермальной установкой, является установка на гейзерах в Калифорнии, с номинальной мощностью 750 МВт. Бразилия проводит одну из крупнейших программ использования возобновляемых источников энергии в мире, связанную с производством топливного этанола из сахарного тростника. Этиловый спирт в настоящее время покрывает 18 процентов потребности страны в автомобильном топливе . Топливный этанол также широко распространен в США.

Примеры возобновляемой энергии

Энергия ветра

Это отрасль энергетики, специализирующаяся на преобразовании кинетической энергии воздушных масс в атмосфере в электрическую,тепловую и любую другую форму энергии для использования в народном хозяйстве. Преобразование происходит с помощью ветрогенератора (для получения электричества),ветряных мельниц (для получения механической энергии) и многих других видов агрегатов. Энергия ветра является следствием деятельности солнца, поэтому она относится к возобновляемым видам энергии.

В перспективе планируется использование энергии ветра не посредством ветрогенераторов , а более нетрадиционным образом. В городе Масдар (ОАЭ) планируется строительство электростанции работающей на пьезоэффекте . Она будет представлять собой лес из полимерных стволов покрытых пьезоэлектрическими пластинами . Эти 55-метровые стволы будут изгибаться под действием ветра и генерировать ток .

Гидроэнергия

Преимуществами ПЭС является экологичность и низкая себестоимость производства энергии. Недостатками - высокая стоимость строительства и изменяющаяся в течение суток мощность, из-за чего ПЭС может работать только в единой энергосистеме с другими типами электростанций.

Энергия волн

Энергия солнечного света

Данный вид энергетики основывается на преобразовании электромагнитного солнечного излучения в электрическую или тепловую энергию.

К СЭС косвенного действия относятся:

  • Башенные - концентрирующие солнечный свет гелиостатами на центральной башне наполненной солевым раствором.
  • Модульные - на этих СЭС теплоноситель, как правило масло , подводится к приемнику в фокусе каждого параболо -цилиндрического зеркального концентратора и затем передает тепло воде испаряя её.

Схема солнечного пруда:
1 - слой пресной воды; 2 - градиентный слой;
3 - слой крутого рассола; 4 - теплообменник.

Крупнейшая электростанция подобного типа находится в Израиле , её мощность 5 Мвт, площадь пруда 250 000 м 2 , глубина 3 м.

Геотермальная энергия

Электростанции данного типа представляют собой теплоэлектростанции использующие в качестве теплоносителя воду из горячих . В связи с отсутствием необходимости нагрева воды ГеоТЭС являются в значительной степени более экологически чистыми нежели ТЭС. Строятся ГеоТЭС в вулканических районах, где на относительно небольших глубинах вода перегревается выше температуры кипения и просачивается к поверхности, иногда проявляясь в виде гейзеров . Доступ к подземным источникам осуществляется бурением скважин.

Биоэнергетика

Данная отрасль энергетики специализируется на производстве энергии из биотоплива . Применяется в производстве как электрической энергии , так и тепловой .

Биотопливо первого поколения

  • Водоросли - простые живые организмы, приспособленные к росту и размножению в загрязнённой или солёной воде (содержат до двухсот раз больше масла, чем источники первого поколения, таких как соевые бобы);
  • Рыжик (растение) - растущий в ротации с пшеницей и другими зерновыми культурами;
  • Jatropha curcas или Ятрофа - растущее в засушливых почвах, с содержанием масла от 27 до 40 % в зависимости от вида.

Из биотоплив второго поколения, продающихся на рынке, наиболее известны BioOil производства канадской компании Dynamotive и SunDiesel германской компании CHOREN Industries GmbH .

По оценкам Германского Энергетического Агентства (Deutsche Energie-Agentur GmbH) (при ныне существующих технологиях) производство топлив пиролизом биомассы может покрыть 20 % потребностей Германии в автомобильном топливе. К 2030 году , с развитием технологий, пиролиз биомассы может обеспечить 35 % германского потребления автомобильного топлива. Себестоимость производства составит менее €0,80 за литр топлива.

Создана «Пиролизная сеть» (Pyrolysis Network (PyNe) - исследовательская организация, объединяющая исследователей из 15 стран Европы , США и Канады .

Весьма перспективно также использование жидких продуктов пиролиза древесины хвойных пород. Например, смесь 70% живичного скипидара , 25% метанола и 5% ацетона , то есть фракций сухой перегонки смолистой древесины сосны , с успехом может применяться в качестве замены бензина марки А-80. Причём для перегонки применяются отходы дереводобычи: сучья , пень , кора . Выход топливных фракций достигает 100 килограммов с тонны отходов.

Биотопливо третьего поколения - топлива, полученные из водорослей.

Использованию постоянных процессов противопоставлена добыча ископаемых энергоносителей, таких как каменный уголь , нефть , природный газ или торф . В широком понимании они тоже являются возобновляемыми, но не по меркам человека, так как их образование требует сотен миллионов лет, а их использование проходит гораздо быстрее.

Меры поддержки возобновляемых источников энергии

На данный момент существует достаточно большое количество мер поддержки ВИЭ. Некоторые из них уже зарекомендовали себя как эффективные и понятные участникам рынка. Среди таких мер стоит более подробно рассмотреть:

  • Зеленые сертификаты;
  • Возмещение стоимости технологического присоединения;
  • Тарифы на подключение;
  • Система чистого измерения;

Зеленые сертификаты

Под зелеными сертификатами понимаются сертификаты, подтверждающие генерацию определенного объема электроэнергии на основе ВИЭ. Данные сертификаты получают только квалифицированные соответствующим органом производители. Как правило, зеленый сертификат подтверждает генерацию 1Мвт ч, хотя данная величина может быть и другой. Зеленый сертификат может быть продан либо вместе с произведенной электроэнергией, либо отдельно, обеспечивая дополнительную поддержку производителя электроэнергии. Для отслеживания выпуска и принадлежности «зеленых сертификатов» используются специальные программно-технические средства (WREGIS, M-RETS, NEPOOL GIS). В соответствии с некоторыми программами сертификаты можно накапливать (для последующего использования в будущем), либо занимать (для исполнения обязательств в текущем году). Движущей силой механизма обращения зеленых сертификатов является необходимость выполнения компаниями обязательств, взятых на себя самостоятельно или наложенных правительством. В зарубежной литературе «зеленые сертификаты» известны также как: Renewable Energy Certificates (RECs), Green tags, Renewable Energy Credits.

Возмещение стоимости технологического присоединения

Для повышения инвестиционной привлекательности проектов на основе ВИЭ государственными органами может предусматриваться механизм частичной или полной компенсации стоимости технологического присоединения генераторов на основе возобновляемых источников к сети. На сегодняшний день только в Китае сетевые организации полностью принимают на себя все затраты на технологическое присоединение.

Фиксированные тарифы на энергию ВИЭ

Накопленный в мире опыт позволяет говорить о фиксированных тарифах как о самых успешных мерах по стимулированию развития возобновляемых источников энергии. В основе данных мер поддержки ВИЭ лежат три основных фактора:

  • гарантия подключения к сети;
  • долгосрочный контракт на покупку всей произведенной ВИЭ электроэнергии;
  • гарантия покупки произведенной электроэнергии по фиксированной цене.

Фиксированные тарифы на энергию ВИЭ могут отличаться не только для разных источников возобновляемой энергии, но и в зависимости от установленной мощности ВИЭ. Одним из вариантов системы поддержки на основе фиксированных тарифов является использование фиксированной надбавки к рыночной цене энергии ВИЭ. Как правило, надбавка к цене произведенной электроэнергии или фиксированный тариф выплачиваются в течение достаточно продолжительного периода (10-20 лет), тем самым гарантируя возврат вложенных в проект инвестиций и получение прибыли.

Система чистого измерения

Данная мера поддержки предусматривает возможность измерения отданного в сеть электричества и дальнейшее использование этой величины во взаиморасчетах с электроснабжающей организацией. В соответствии с «системой чистого измерения» владелец ВИЭ получает розничный кредит на величину, равную или большую выработанной электроэнергии. В соответствии с законодательством, во многих странах электроснабжающие организации обязаны предоставлять потребителям возможность осуществления чистого измерения.

Инвестиции

Во всём мире в 2008 году инвестировали $51,8 млрд в ветроэнергетику, $33,5 млрд в солнечную энергетику и $16,9 млрд в биотопливо. Страны Европы в 2008 году инвестировали в альтернативную энергетику $50 млрд, страны Америки - $30 млрд, Китай - $15,6 млрд, Индия - $4,1 млрд .

В 2009 году инвестиции в возобновляемую энергетику во всём мире составляли $160 млрд, а в 2010 году - $211 млрд. В 2010 году в ветроэнергетику было инвестировано $94,7 млрд, в солнечную энергетику - $26,1 млрд и $11 млрд - в технологии производства энергии из биомассы и мусора .

См. также

Примечания

Ссылки

  • Вы и «зеленая» энергетика , раздел сайта Всемирного фонда дикой природы

ВВЕДЕНИЕ

Современное развитие энергетики в России характеризуется ростом стоимости производства энергии. Наибольшее увеличение стоимости энергии наблюдается в удаленных районах Сибири и Дальнего Востока России, Камчатки, Курильских островов, где в основном используются децентрализованные системы электроснабжения на базе дизельных электростанций, работающих на привозном топливе. Совокупная стоимость электроэнергии в этих районах часто превышает мировой уровень цен и достигает 0,25 и более долларов США за 1 кВтчас.

Мировой опыт показывает, что ряд стран и регионов успешно решают сегодня проблемы энергообеспечения на основе развития возобновляемой энергетики. Для интенсификации практического использования возобновляемых энергоресурсов в этих странах законодательно устанавливаются различные льготы для производителей «зеленой» энергии. Однако решающий успех возобновляемой энергетики определяется в конечном счете ее эффективностью в сравнении с другими более традиционными на сегодня энергоустановками топливной энергетики. Развитие технической и законодательной базы возобновляемой энергетики и устойчивые тенденции роста стоимости топливноэнергетических ресурсов уже сегодня определяют техникоэкономические преимущества электростанций, использующих возобновляемые энергоресурсы. Очевидно, что в перспективе эти преимущества будут увеличиваться, расширяя области применения возобновляемой энергетики и увеличивая ее вклад в мировой энергетический баланс.

КЛАССИФИКАЦИЯ ВОЗОБНОВЛЯЕМЫХ ИСТОЧНИКОВ ЭНЕРГИИ (ВИЭ)

Возобновляемые источники энергии (ВИЭ) - это энергоресурсы постоянно существующих природных процессов на планете, а также энергоресурсы продуктов жизнедеятельности биоценозов растительного и животного происхождения. Характерной особенностью ВИЭ является их неистощаемость, либо способность восстанавливать свой потенциал за короткое время - в пределах срока жизни одного поколения людей.

Генеральной Ассамблеей ООН в соответствии с резолюцией 33/148 (1978г.) введено понятие «новые и возобновляемые источники энергии», в которое включаются следующие формы энергии: солнечная, геотермальная, ветровая, энергия морских волн, приливов океана, энергия биомассы древесины, древесного угля, торфа, тяглового скота, сланцев, битуминозных песчаников, гидроэнергия.

Чаще всего к возобновляемым источникам энергии относят энергию солнечного излучения, ветра, потоков воды, биомассы, тепловую энергию верхних слоев земной коры и океана.

ВИЭ можно классифицировать по видам энергии:

Механическая энергия (энергия ветра и потоков воды);

Тепловая и лучистая энергия (энергия солнечного излучения и тепла Земли);

Химическая энергия (энергия, заключенная в биомассе).

Если использовать понятие качества энергии - коэффициент полезного действия, определяющий долю энергии источника, которая может быть превращена в механическую работу, то ВИЭ можно классифицировать следующим образом: возобновляемые источники механической энергии характеризуются высоким качеством и используются в основном для производства электроэнергии. Так, качество гидроэнергии характеризуется значением 0,6…0,7; ветровой - 0,3…0,4. Качество тепловых и лучистых ВИЭ не превышает 0,3…0,35. Еще ниже показатель качества солнечного излучения, используемого для фотоэлектрического преобразования, - 0,15…0,3. Качество энергии биотоплива также относительно низкое и, как правило, не превышает 0,3.

Целесообразность и масштабы использования возобновляемых источников энергии определяются в первую очередь их экономической эффективностью и конкурентоспособностью с традиционными энергетическими технологиями. Основными преимуществами ВИЭ по сравнению с энергоисточниками на органическом топливе являются практическая неисчерпаемость ресурсов, повсеместное распространение многих из них, отсутствие топливных затрат и выбросов вредных веществ в окружающую среду. Однако они, как правило, более капиталоемки, и их доля в общем энергопроизводстве пока невелика (за исключением гидроэлектростанций). Согласно большинству прогнозов, эта доля останется умеренной и в ближайшие годы. Вместе с тем во многих странах мира возрастает интерес к разработке и внедрению нетрадиционных и возобновляемых источников энергии. Это объясняется несколькими причинами.

Во-первых, ВИЭ, уступая традиционным энергоисточникам при крупномасштабном производстве энергии, уже в настоящее время при определенных условиях эффективны в малых автономных энергосистемах, являясь более экономичными (по сравнению с энергоисточниками, использующими дорогое привозное органическое топливо) и экологически чистыми.

Во-вторых, применение даже более дорогих, по сравнению с традиционными энергоисточниками, ВИЭ может оказаться целесообразным по другим, неэкономическим (экологическим или социальным) критериям. В частности, применение ВИЭ в малых автономных энергосистемах или у отдельных потребителей может существенно повысить качество жизни населения.

В-третьих, в более отдаленной перспективе роль ВИЭ может существенно возрасти и в глобальном масштабе. В ряде стран и международных организаций проводятся исследования долгосрочных перспектив развития энергетики мира и его регионов. Интерес к этой проблеме обусловлен определяющей ролью энергетики в обеспечении экономического роста, ее существенным и все возрастающим негативным воздействием на окружающую среду, а также ограниченностью запасов топливно-энергетических ресурсов. В связи с этим, в будущем неизбежна кардинальная перестройка структуры энергетики с переходом к использованию экологически чистых и возобновляемых источников энергии. Мировым сообществом признана необходимость перехода к устойчивому развитию, предполагающему поиск стратегии, обеспечивающей, с одной стороны - экономический рост и повышение уровня жизни людей, особенно в развивающихся странах, с другой - снижение негативного влияния деятельности человека на окружающую среду до безопасного предела, позволяющего избежать в долгосрочной перспективе катастрофических последствий. В переходе к устойчивому развитию важная роль будет принадлежать новым энергетическим технологиям и источникам энергии, в том числе ВИЭ.

К основным недостаткам, ограничивающим применение ВИЭ, следует отнести относительно низкую энергетическую плотность и крайнюю изменчивость. Низкая удельная мощность потока энергоносителя приводит к увеличению массогабаритных показателей энергоустановок, а изменчивость первичного энергоресурса, вплоть до периодов его полного отсутствия, вызывает необходимость в устройствах аккумулирования энергии или резервных энергоисточников. В результате, стоимость производимой энергии оказывается высока даже при отсутствии топливной составляющей в совокупной цене энергии.

Вклад нетрадиционных возобновляемых источников энергии в мировой энергетический баланс в перспективе оценивается от 1…2 % до 10 %, хотя уже сегодня есть страны, где доля этих источников превышает половину национального энергетического баланса. Доля возобновляемых источников энергии в топливо-энергетическом комплексе разных стран мира постоянно возрастает. Это касается как развитых стран (США, Германия, Япония, Франция, Италия и др.), так и, особенно, развивающихся. Например, в 2000 г. доля возобновляемых источников энергии в производстве электроэнергии составила: Норвегия -99,7 %, Исландия - 99,9 %, Новая Зеландия - 72 %, Австрия - 72,3 %, Канада - 60,5 %, Швеция - 57,1 %, Швейцария - 57,2 %, Финляндия -33,3 %, Португалия - 30,3 %. Последнее десятилетие прошлого века для мира в целом характеризовалось неуклонным ростом доли возобновляемых источников энергии в общем энергобалансе большинства стран мира. Например, Великобритания - с 2,1 % до 2,7 %; Германия - с 3,7 % до 6,3 %; Франция - с 13,3 % до 14,6 %; Италия - с 16,4 % до 18,9 % и т. д.

В предвидении серьезных экологических последствий во многих развитых странах разработана экономическая стратегия, распространяющаяся не только на энергетику, но и на другие отрасли производства и потребления ресурсов, которые могут нанести ущерб окружающей среде. Эта стратегия предусматривает ведущую роль государства в решении экологических проблем. Примером стимулирования развития энергетики на возобновляемых источниках является германский «Закон

о приоритетности использования возобновляемых источников энергии». Резкое увеличение масштабов освоения ресурсов возобновляемых источников энергии в конце 20-го века было обеспечено в разных странах мира, особенно на начальных этапах их освоения, с помощью Государственных программ поддержки этой отрасли энергетики (Германия, Япония, США, Индия и т. д.)

солнечный биотопливо ветроэлектростанция геотермальный

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подобные документы

    Виды нетрадиционных возобновляемых источников энергии, технологии их освоения. Возобновляемые источники энергии в России до 2010 г. Роль нетрадиционных и возобновляемых источников энергии в реформировании электроэнергетического комплекса Свердловской обл.

    реферат , добавлен 27.02.2010

    Характеристика возобновляемых источников энергии: основные аспекты использования; преимущества и недостатки в сравнении с традиционными; перспективы использования в России. Способы получения электричества и тепла из энергии солнца, ветра, земли, биомассы.

    курсовая работа , добавлен 30.07.2012

    Динамика развития возобновляемых источников энергии в мире и России. Ветроэнергетика как отрасль энергетики. Устройство ветрогенератора - установки для преобразования кинетической энергии ветрового потока. Перспективы развития ветроэнергетики в России.

    реферат , добавлен 04.06.2015

    Использование возобновляемых источников энергии, их потенциал, виды. Применение геотермальных ресурсов; создание солнечных батарей; биотопливо. Энергия Мирового океана: волны, приливы и отливы. Экономическая эффективность использования энергии ветра.

    реферат , добавлен 18.10.2013

    Существующие источники энергии. Мировые запасы энергоресурсов. Проблемы поиска и внедрения нескончаемых или возобновляемых источников энергии. Альтернативная энергетика. Энергия ветра, недостатки и преимущества. Принцип действия и виды ветрогенераторов.

    курсовая работа , добавлен 07.03.2016

    Актуальность поиска нетрадиционных способов и источников получения энергии, в особенности возобновляемых. Эксплуатация малых гидроэлектростанций, развитие промышленной ветроэнергетики. Характеристика солнечных, приливных и океанических электростанций.

    курсовая работа , добавлен 15.12.2011

    Использование возобновляемых источников энергии. Энергия солнца, ветра, биомассы и падающей воды. Генерирование электричество из геотермальных источников. Сущность геотермальной энергии. Геотермальные электрические станции с комбинированным циклом.